×
09.06.2019
219.017.7628

Результат интеллектуальной деятельности: ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002690971
Дата охранного документа
07.06.2019
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным параллельным ему плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, при том что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора. Технический результат - расширение функциональных возможностей датчика давления, повышение его чувствительности. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения.

Известно устройство для измерения давления, содержащее коаксиальный резонатор, на торце которого расположены два плоских диска, выполняющих функцию конденсатора. Один из этих дисков прикреплен с помощью штока к центру мембраны, воспринимающей измеряемое давление, а другой диск закреплен на торце внутреннего проводника коаксиальной линии параллельно первому диску (RU 2221228 С2, 10.01.2004).

Недостатком этого устройства является строгое фиксирование диапазона измерения, что обусловлено имеющей место предельной величиной прогиба мембраны датчика давления.

Известно также устройство (RU 2457451 С2, 27.07.2012), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Устройство-прототип содержит датчик в виде коаксиального резонатора, который содержит цилиндрический корпус, стержень, два плоских диска, крышку, воспринимающую измеряемое давление, днище и две петли связи. При этом датчик снабжен дополнительным коаксиальным резонатором с аналогичными элементами первого коаксиального резонатора, причем корпуса обоих резонаторов выполнены заодно, днище первого резонатора является крышкой второго резонатора, жесткость которой рассчитывается исходя из диапазона измеряемого давления и жесткости крышки первого резонатора.

Недостатком устройства-прототипа является ограниченная область применения, обусловленная предельной величиной прогиба деформируемой крышки, воспринимающей измеряемое давление. Если давление превышает предельное значение, связанное с максимальным прогибом крышки, то устройство становится неработоспособным.

Техническим результатом изобретения является расширение функциональных возможностей датчика давления за счет расширения диапазона измерения давления, повышение его чувствительности.

Технический результат достигается тем, что датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным, параллельным ему, плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, при этом что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора.

Устройство поясняется чертежом, изображающим схему устройства.

На нем показаны: корпус 1, крышка 2, днище 3, стержни 4 и 5, элементы связи 6, 7, 8 и 9, диски 10, 11, 12, 13 и 14, днище 15, стержень 16.

Устройство работает следующим образом.

Корпус 1, крышка 2, днище 3 и стержень 4 образуют первый коаксиальный резонатор, внутри которого на стержне 4 закреплен диск 10, образующий с параллельным ему диском 11 электрическую емкость (конденсатор), плоская мембрана крышки 2 воспринимает измеряемое давление и перемещает диск 11, элементы связи 6 и 7 служат для подвода и съема электромагнитной энергии. Корпус 1, днище 15, П-образный стержень 5 образуют второй (дополнительный) коаксиальный резонатор совместно с параллельными дисками 12, 13 и 14; элементы связи 8 и 9 служат для подвода и съема электромагнитной энергии в дополнительном резонаторе.

Под воздействием измеряемого давления Р плоская мембрана крышки 2 деформируется и диск 11 перемещается. Электрическая емкость Сн1 конденсатора первого резонатора изменяется; соответственно этому изменяется резонансная частота электромагнитных колебаний датчика. Подключение электрической емкости Сн1 эквивалентно удлинению разомкнутого на этом конце отрезка длинной линии на величину , равную (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. С. 18-19)

где ƒ - частота, c - скорость света (3⋅108 м/с), W0 - волновое сопротивление длинной линии. Поэтому резонансная (собственная) частота ƒp1 электромагнитных колебаний отрезка длинной линии, на одном конце которого подключена емкость Сн1, равна

где - длина отрезка длинной линии (длина стержня 4).

Резонансная частота ƒp1 первого коаксиального резонатора зависит величины электрической емкости Сн1, которая, в свою очередь, зависит от геометрических параметров резонатора и величины зазора между дисками 10 и 11, который функционально связан с измеряемым давлением (RU 2457451 С2, 27.07.2012):

где D1 - диаметр каждого из дисков 10 и 11, Δ1 - зазор между дисками 10 и 11.

При измеряемом давлении, равном Pmax, являющимся предельным для первого резонатора, этот резонатор перестает работать, так как зазор Δ1 между дисками 10 и 11 становится разным нулю. При дальнейшем увеличении измеряемого давления Р, то есть при Р>Pmax - превышении значения Р предельного значения Pmax, стержень 4 начинает прогибать днище 3. Тогда диск 12, перемещаясь, уменьшает зазор между дисками 12 и 13, что приводит, к изменению электрической емкости конденсатора второго (дополнительного) резонатора. Следовательно, резонансная частота ƒp2 второго резонатора также будет изменяться.

В данном устройстве стержень 5 второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск 14, идентичный первому плоскому диску 13, подсоединенному к первому торцу стержня 5. Оба этих диска 13 и 14 установлены перпендикулярно продольной оси стержня 5, и каждый из них образует конденсатор - электрическую емкость Сн2 (будем считать эти электрические емкости одинаковыми, что непринципиально) с параллельным им диском 12, соединенным с днищем 3 - деформируемой крышкой второго резонатора при Р>Pmax.

Эти электрические емкости Сн2 являются оконечными реактивными (емкостными) нагрузками второго коаксиального резонатора. С помощью элементов связи 8 и 9 второй коаксиальный резонатор соединен с электронным блоком, служащим для возбуждения электромагнитных колебаний в этом резонаторе и измерения его резонансной частоты ƒp2. Элементы связи 8 и 9, как и элементы связи 6 и 7, могут быть, в частности, выполнены, как показано на чертеже, в виде петель связи (магнитных элементов связи). Во втором коаксиальном резонаторе с П-образным внутренним проводником (стержнем 5) на его концах с электрическими емкостями, образуемыми диском 12 и каждым из дисков 13 и 14, имеются максимумы значений напряженности электрического поля стоячей волны, в то время как в центральной области этого резонатора - там, где имеет место изгиб внутреннего проводника, - электрическое поле стоячей волны отсутствует, а магнитное поле имеет максимальное значение. Поэтому подсоединение металлического стержня 16 накоротко одним концом к стержню 5 в середине его длины (там, где электрическое поле стоячей волны отсутствует) и другим концом к днищу 15, что обеспечивает его жесткую конструкцию, не влияет практически на распределение электрического и магнитного полей стоячей волны во втором резонаторе.

В зависимости от величины внешнего измеряемого давления Р, при Р>Pmax изменяется величина прогиба деформируемой крышки второго резонатора - днищем 3. При этом изменяется зазор Δ2 - расстояние между диском 12 и каждым из дисков 13 и 14, и, как следствие, величины электрической емкости Сн2 - реактивной (емкостной) нагрузки на каждом торце второго коаксиального резонатора (отрезка коаксиальной длинной линии).

Покажем, что при подключении к обоим торцам второго коаксиального резонатора нагрузочных сопротивлений в виде сосредоточенных электрических емкостей Сн2, имеет место увеличение чувствительности к величине измеряемого зазора по сравнению с коаксиальным резонатором, имеющем нагрузочное сопротивление - электрическую емкость Сн1 лишь на одном торце. Последнее имеет место в случае первого коаксиального резонатора, рассмотренного выше, для которого справедливо соотношение (2) для его резонансной частоты ƒp1.

Подключение на каждом конце коаксиального резонатора (отрезка длинной линии) электрической емкости Сн2 эквивалентно удлинению каждого, разомкнутого на этом конце, отрезка длинной линии на величину , равную (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. С. 18-19)

где ƒ - частота, с - скорость света (3⋅108 м/с), W0 - волновое сопротивление длинной линии. При этом эквивалентная длина отрезка коаксиальной длинной линии, разомкнутого, на обоих концах, есть , где - длина самого отрезка коаксиальной длинной линии с П-образным внутренним проводником (длина П-образного стрежня 5). Поэтому резонансная (собственная) частота ƒp2 электромагнитных колебаний отрезка длинной линии, на каждом из двух концов которого подключена емкость Сн2, равна

Если одна из емкостей Сн2 является чувствительным элементом, а другая имеет фиксированную величину Сн20, не зависящую от измеряемого параметра, то такой отрезок длинной линии сходен с отрезком длинной линии (вторым коаксиальным резонатором) в устройстве-прототипе, где "рабочим" является только один торец соответствующего резонатора. В этом случае для коаксиального резонатора с подключенными к его концам емкостями Сн2 и Сн20 резонансная частота рассчитывается так:

где Δ2 - измеряемый зазор, которым является расстояние между диском 12 и каждым из дисков 13 и 14, соответствующее прогибу деформируемой крышки (мембраны) второго резонатора.

При наличии двух "рабочих" торцевых емкостей Сн2 на концах такого отрезка длинной линии значение резонансной частоты ƒp2 будет равным

При n=1 в формулах (5), (6) и (7) отрезок длинной линии является полуволновым, разомкнутым на обоих концах. При этом на его концах наблюдается максимум амплитуды электрического поля и минимум амплитуды магнитного поля, а в центральной части отрезка длинной линии наоборот - минимум амплитуды электрического поля и максимум амплитуды магнитного поля. Именно для связи по магнитному полю элементы 8 и 9 имеют форму петель.

Преобразовав выражения (6) и (7) можно получить формулы для расчета значений S0 и S чувствительности устройств (датчиков давления) с одним или двумя "рабочими" концами отрезка длинной линии:

Сравнивая (8) и (9) с учетом того, что начальное значение резонансной частоты для обоих устройств (с одним и двумя "рабочими" концами отрезка длинной линии) при некотором номинальном значении Δ0 измеряемого параметра (зазора) одна и та же (ƒp200)=ƒp20)), получим: S=2S0. Подобное соотношение имеет место в реальном диапазоне изменения зазора при деформации мембраны (деформируемой крышки второго резонатора днища 3) датчика давления. Следовательно, чувствительность предлагаемого устройства - датчика давления - к измеряемому давлению в два раза выше чувствительности устройства с одним "рабочим" концом отрезка длинной линии, соответствующего устройству - прототипу.

Конструкции резонаторов в виде отрезков коаксиальной длинной линии могут быть изготовлены из меди, латуни и других металлов с небольшим удельным сопротивлением. Добротность этих резонаторов должна быть достаточно высокой (~100) для высокоточного измерения резонансной частоты. Деформируемые крышки (мембраны) могут быть изготовлены из различных металлов, например, элинвара (RU 2221228 С2, 10.01.2004). Величина прогиба мембраны выражается следующей формулой (US 3927369 А, 16.12.1975):

где ΔР - разность давлений с внешней и внутренней сторон мембраны, a - радиус цилиндрической мембраны, d - ее толщина, Е - модуль упругости конкретного материала, из которого изготовлена мембрана.

В качестве материала для мембраны допустимо выбрать нержавеющую сталь. Толщина мембраны может составлять 0,1÷0,3 мм, а ее диаметр 10÷40 мм. Формула (10) выражает максимальную величину деформации в центре мембраны.

При использовании двух чувствительных элементов - оконечных электрических емкостей на обоих концах коаксиального резонатора с П-образным внутренним проводником - одному и тому же изменению давления соответствует вдвое большее изменение резонансной частоты электромагнитных колебаний резонатора, то есть имеет место повышение чувствительности данного устройства - датчика давления.

Кроме того, в этом устройстве с двумя торцевыми электрическими емкостями на концах коаксиального резонатора с П-образным внутренним проводником одно и то же давление Р может быть измерено при вдвое меньшей величине прогиба деформируемой крышки второго резонатора (мембраны), чем в случае устройства с одной такой электрической емкостью. Во-первых, это позволяет не предъявлять столь жестких требований к этим параметрам (размерам a и d, модулю упругости Е) мембраны; во-вторых, дает возможность расширить диапазон измерения давления, превышающего значения, предельные для деформируемой крышки первого резонатора, поскольку прогибы упругих стенок на ту же величину, что и ранее, теперь соответствуют более высоким значениям давления.

Таким образом, предлагаемое устройство - датчик давления - характеризуется повышение в два раза чувствительностью к измеряемому давлению, а также возможностью измерения больших, превышающих предельные для деформируемой крышки первого резонатора, значений внешнего давления при менее жестких требованиях к параметрам деформируемой крышки второго резонатора датчика, возможностью измерения существенно больших значений внешнего давления при тех же параметрах деформируемой крышки второго резонатора датчика.

Датчик давления, выполненный в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным параллельным ему плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, отличающийся тем, что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора.
ДАТЧИК ДАВЛЕНИЯ
ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 276.
10.07.2014
№216.012.dc1f

Способ преобразования энергии ветра в полезную энергию

Изобретение относится к области ветроэнергетики. Способ преобразования энергии ветра в полезную энергию путем воздействия на струны набегающего потока воздуха. Колебания струн под действием потока воздуха усиливают за счет увеличения их поверхности путем навешивания на них полотнищ....
Тип: Изобретение
Номер охранного документа: 0002522129
Дата охранного документа: 10.07.2014
10.08.2014
№216.012.e7b6

Устройство формирования переноса в сумматоре

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах для реализации арифметических устройств. Техническим результатом является повышение надежности. Устройство содержит логические транзисторы n-типа, предзарядовые транзисторы р-типа,...
Тип: Изобретение
Номер охранного документа: 0002525111
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7c4

Малогабаритный музыкальный фонтан

Изобретение относится к гидротехническим устройствам, а именно к фонтанам, в том числе к декоративным и демонстративным, в которых изменяется характер струи. Малогабаритный музыкальный фонтан содержит основание, с закрепленными на нем корпусом, электродвигателем и кронштейнами крепления траверс...
Тип: Изобретение
Номер охранного документа: 0002525125
Дата охранного документа: 10.08.2014
10.09.2014
№216.012.f364

Устройство для измерения свойства диэлектрического материала

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения. Устройство для измерения свойства диэлектрического материала содержит генератор электромагнитных колебаний, первый развязывающий элемент,...
Тип: Изобретение
Номер охранного документа: 0002528130
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f365

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Технический результат - повышение точности достигается тем, что устройство содержит генератор сверхвысокочастотных электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002528131
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
20.10.2014
№216.012.fe4b

Способ позиционного управления газовой турбиной

Изобретение относится к области позиционного управления газовой турбиной. Технический результат изобретения - обеспечение позиционного управления газовой турбиной с получением необходимой динамики и точности позиционирования. Газ подают на лопатки турбины до достижения точки позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002530955
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe96

Объемный расходомер

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Объемный расходомер содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока,...
Тип: Изобретение
Номер охранного документа: 0002531030
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe98

Способ измерения расхода среды

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной...
Тип: Изобретение
Номер охранного документа: 0002531032
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
Показаны записи 31-40 из 86.
27.03.2016
№216.014.c78d

Способ определения положения границы раздела двух веществ в емкости

Изобретение относится к измерительной технике. В заявленном способе определения положения границы раздела двух веществ в емкости, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу раздела, размещают вертикально отрезок длинной линии длиной l,...
Тип: Изобретение
Номер охранного документа: 0002578749
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.2e71

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах...
Тип: Изобретение
Номер охранного документа: 0002579359
Дата охранного документа: 10.04.2016
10.06.2016
№216.015.4603

Устройство для измерения давления

Изобретение относится к измерительной технике. Устройство для измерения давления содержит СВЧ чувствительный элемент в виде металлической полости, часть стенки которой выполнена упругой, соединенный с помощью элемента возбуждения и элемента съема электромагнитных колебаний с электронным блоком,...
Тип: Изобретение
Номер охранного документа: 0002586388
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.a204

Способ измерения физической величины

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин, в частности механических величин, геометрических параметров объектов и физических свойств веществ. При реализации способа измерения физической величины с помощью...
Тип: Изобретение
Номер охранного документа: 0002606807
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a7eb

Способ измерения количества каждой компоненты многокомпонентной среды в емкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного количества (объема) многокомпонентной среды в емкости, произвольным образом распределенной внутри нее. В частности, оно может быть применено для измерения количества каждой компоненты...
Тип: Изобретение
Номер охранного документа: 0002611210
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8da

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб на металлургических, машиностроительных предприятиях, в том числе при их производстве, например, по методу центробежного литья. Оно может быть применено также при бесконтактном измерении...
Тип: Изобретение
Номер охранного документа: 0002611334
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8e8

Способ измерения состава двухфазного вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами двухфазного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002611439
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.ab10

Способ измерения состава трехкомпонентного водосодержащего вещества в потоке

Изобретение относится к области измерительной техники и может быть использовано для высокоточного измерения физических свойств веществ, являющихся компонентами трехкомпонентного вещества, неподвижного или транспортируемого по трубопроводу. В частности, данный способ может быть применен для...
Тип: Изобретение
Номер охранного документа: 0002612033
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.b28a

Способ измерения влагосодержания жидкости

Изобретение относится к электротехнике и может быть использовано для высокоточного измерения влагосодержания различных диэлектрических жидких веществ, в частности нефти и нефтепродуктов, находящихся в емкостях или перекачиваемых по трубопроводам. Способ измерения влагосодержания жидкости...
Тип: Изобретение
Номер охранного документа: 0002614054
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.c922

Устройство для измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Оно может быть применено также для измерения диаметра других протяженных металлических изделий (стержней, нитей и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002619356
Дата охранного документа: 15.05.2017
+ добавить свой РИД