×
09.06.2019
219.017.7628

Результат интеллектуальной деятельности: ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002690971
Дата охранного документа
07.06.2019
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным параллельным ему плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, при том что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора. Технический результат - расширение функциональных возможностей датчика давления, повышение его чувствительности. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения.

Известно устройство для измерения давления, содержащее коаксиальный резонатор, на торце которого расположены два плоских диска, выполняющих функцию конденсатора. Один из этих дисков прикреплен с помощью штока к центру мембраны, воспринимающей измеряемое давление, а другой диск закреплен на торце внутреннего проводника коаксиальной линии параллельно первому диску (RU 2221228 С2, 10.01.2004).

Недостатком этого устройства является строгое фиксирование диапазона измерения, что обусловлено имеющей место предельной величиной прогиба мембраны датчика давления.

Известно также устройство (RU 2457451 С2, 27.07.2012), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Устройство-прототип содержит датчик в виде коаксиального резонатора, который содержит цилиндрический корпус, стержень, два плоских диска, крышку, воспринимающую измеряемое давление, днище и две петли связи. При этом датчик снабжен дополнительным коаксиальным резонатором с аналогичными элементами первого коаксиального резонатора, причем корпуса обоих резонаторов выполнены заодно, днище первого резонатора является крышкой второго резонатора, жесткость которой рассчитывается исходя из диапазона измеряемого давления и жесткости крышки первого резонатора.

Недостатком устройства-прототипа является ограниченная область применения, обусловленная предельной величиной прогиба деформируемой крышки, воспринимающей измеряемое давление. Если давление превышает предельное значение, связанное с максимальным прогибом крышки, то устройство становится неработоспособным.

Техническим результатом изобретения является расширение функциональных возможностей датчика давления за счет расширения диапазона измерения давления, повышение его чувствительности.

Технический результат достигается тем, что датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным, параллельным ему, плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, при этом что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора.

Устройство поясняется чертежом, изображающим схему устройства.

На нем показаны: корпус 1, крышка 2, днище 3, стержни 4 и 5, элементы связи 6, 7, 8 и 9, диски 10, 11, 12, 13 и 14, днище 15, стержень 16.

Устройство работает следующим образом.

Корпус 1, крышка 2, днище 3 и стержень 4 образуют первый коаксиальный резонатор, внутри которого на стержне 4 закреплен диск 10, образующий с параллельным ему диском 11 электрическую емкость (конденсатор), плоская мембрана крышки 2 воспринимает измеряемое давление и перемещает диск 11, элементы связи 6 и 7 служат для подвода и съема электромагнитной энергии. Корпус 1, днище 15, П-образный стержень 5 образуют второй (дополнительный) коаксиальный резонатор совместно с параллельными дисками 12, 13 и 14; элементы связи 8 и 9 служат для подвода и съема электромагнитной энергии в дополнительном резонаторе.

Под воздействием измеряемого давления Р плоская мембрана крышки 2 деформируется и диск 11 перемещается. Электрическая емкость Сн1 конденсатора первого резонатора изменяется; соответственно этому изменяется резонансная частота электромагнитных колебаний датчика. Подключение электрической емкости Сн1 эквивалентно удлинению разомкнутого на этом конце отрезка длинной линии на величину , равную (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. С. 18-19)

где ƒ - частота, c - скорость света (3⋅108 м/с), W0 - волновое сопротивление длинной линии. Поэтому резонансная (собственная) частота ƒp1 электромагнитных колебаний отрезка длинной линии, на одном конце которого подключена емкость Сн1, равна

где - длина отрезка длинной линии (длина стержня 4).

Резонансная частота ƒp1 первого коаксиального резонатора зависит величины электрической емкости Сн1, которая, в свою очередь, зависит от геометрических параметров резонатора и величины зазора между дисками 10 и 11, который функционально связан с измеряемым давлением (RU 2457451 С2, 27.07.2012):

где D1 - диаметр каждого из дисков 10 и 11, Δ1 - зазор между дисками 10 и 11.

При измеряемом давлении, равном Pmax, являющимся предельным для первого резонатора, этот резонатор перестает работать, так как зазор Δ1 между дисками 10 и 11 становится разным нулю. При дальнейшем увеличении измеряемого давления Р, то есть при Р>Pmax - превышении значения Р предельного значения Pmax, стержень 4 начинает прогибать днище 3. Тогда диск 12, перемещаясь, уменьшает зазор между дисками 12 и 13, что приводит, к изменению электрической емкости конденсатора второго (дополнительного) резонатора. Следовательно, резонансная частота ƒp2 второго резонатора также будет изменяться.

В данном устройстве стержень 5 второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск 14, идентичный первому плоскому диску 13, подсоединенному к первому торцу стержня 5. Оба этих диска 13 и 14 установлены перпендикулярно продольной оси стержня 5, и каждый из них образует конденсатор - электрическую емкость Сн2 (будем считать эти электрические емкости одинаковыми, что непринципиально) с параллельным им диском 12, соединенным с днищем 3 - деформируемой крышкой второго резонатора при Р>Pmax.

Эти электрические емкости Сн2 являются оконечными реактивными (емкостными) нагрузками второго коаксиального резонатора. С помощью элементов связи 8 и 9 второй коаксиальный резонатор соединен с электронным блоком, служащим для возбуждения электромагнитных колебаний в этом резонаторе и измерения его резонансной частоты ƒp2. Элементы связи 8 и 9, как и элементы связи 6 и 7, могут быть, в частности, выполнены, как показано на чертеже, в виде петель связи (магнитных элементов связи). Во втором коаксиальном резонаторе с П-образным внутренним проводником (стержнем 5) на его концах с электрическими емкостями, образуемыми диском 12 и каждым из дисков 13 и 14, имеются максимумы значений напряженности электрического поля стоячей волны, в то время как в центральной области этого резонатора - там, где имеет место изгиб внутреннего проводника, - электрическое поле стоячей волны отсутствует, а магнитное поле имеет максимальное значение. Поэтому подсоединение металлического стержня 16 накоротко одним концом к стержню 5 в середине его длины (там, где электрическое поле стоячей волны отсутствует) и другим концом к днищу 15, что обеспечивает его жесткую конструкцию, не влияет практически на распределение электрического и магнитного полей стоячей волны во втором резонаторе.

В зависимости от величины внешнего измеряемого давления Р, при Р>Pmax изменяется величина прогиба деформируемой крышки второго резонатора - днищем 3. При этом изменяется зазор Δ2 - расстояние между диском 12 и каждым из дисков 13 и 14, и, как следствие, величины электрической емкости Сн2 - реактивной (емкостной) нагрузки на каждом торце второго коаксиального резонатора (отрезка коаксиальной длинной линии).

Покажем, что при подключении к обоим торцам второго коаксиального резонатора нагрузочных сопротивлений в виде сосредоточенных электрических емкостей Сн2, имеет место увеличение чувствительности к величине измеряемого зазора по сравнению с коаксиальным резонатором, имеющем нагрузочное сопротивление - электрическую емкость Сн1 лишь на одном торце. Последнее имеет место в случае первого коаксиального резонатора, рассмотренного выше, для которого справедливо соотношение (2) для его резонансной частоты ƒp1.

Подключение на каждом конце коаксиального резонатора (отрезка длинной линии) электрической емкости Сн2 эквивалентно удлинению каждого, разомкнутого на этом конце, отрезка длинной линии на величину , равную (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1989. С. 18-19)

где ƒ - частота, с - скорость света (3⋅108 м/с), W0 - волновое сопротивление длинной линии. При этом эквивалентная длина отрезка коаксиальной длинной линии, разомкнутого, на обоих концах, есть , где - длина самого отрезка коаксиальной длинной линии с П-образным внутренним проводником (длина П-образного стрежня 5). Поэтому резонансная (собственная) частота ƒp2 электромагнитных колебаний отрезка длинной линии, на каждом из двух концов которого подключена емкость Сн2, равна

Если одна из емкостей Сн2 является чувствительным элементом, а другая имеет фиксированную величину Сн20, не зависящую от измеряемого параметра, то такой отрезок длинной линии сходен с отрезком длинной линии (вторым коаксиальным резонатором) в устройстве-прототипе, где "рабочим" является только один торец соответствующего резонатора. В этом случае для коаксиального резонатора с подключенными к его концам емкостями Сн2 и Сн20 резонансная частота рассчитывается так:

где Δ2 - измеряемый зазор, которым является расстояние между диском 12 и каждым из дисков 13 и 14, соответствующее прогибу деформируемой крышки (мембраны) второго резонатора.

При наличии двух "рабочих" торцевых емкостей Сн2 на концах такого отрезка длинной линии значение резонансной частоты ƒp2 будет равным

При n=1 в формулах (5), (6) и (7) отрезок длинной линии является полуволновым, разомкнутым на обоих концах. При этом на его концах наблюдается максимум амплитуды электрического поля и минимум амплитуды магнитного поля, а в центральной части отрезка длинной линии наоборот - минимум амплитуды электрического поля и максимум амплитуды магнитного поля. Именно для связи по магнитному полю элементы 8 и 9 имеют форму петель.

Преобразовав выражения (6) и (7) можно получить формулы для расчета значений S0 и S чувствительности устройств (датчиков давления) с одним или двумя "рабочими" концами отрезка длинной линии:

Сравнивая (8) и (9) с учетом того, что начальное значение резонансной частоты для обоих устройств (с одним и двумя "рабочими" концами отрезка длинной линии) при некотором номинальном значении Δ0 измеряемого параметра (зазора) одна и та же (ƒp200)=ƒp20)), получим: S=2S0. Подобное соотношение имеет место в реальном диапазоне изменения зазора при деформации мембраны (деформируемой крышки второго резонатора днища 3) датчика давления. Следовательно, чувствительность предлагаемого устройства - датчика давления - к измеряемому давлению в два раза выше чувствительности устройства с одним "рабочим" концом отрезка длинной линии, соответствующего устройству - прототипу.

Конструкции резонаторов в виде отрезков коаксиальной длинной линии могут быть изготовлены из меди, латуни и других металлов с небольшим удельным сопротивлением. Добротность этих резонаторов должна быть достаточно высокой (~100) для высокоточного измерения резонансной частоты. Деформируемые крышки (мембраны) могут быть изготовлены из различных металлов, например, элинвара (RU 2221228 С2, 10.01.2004). Величина прогиба мембраны выражается следующей формулой (US 3927369 А, 16.12.1975):

где ΔР - разность давлений с внешней и внутренней сторон мембраны, a - радиус цилиндрической мембраны, d - ее толщина, Е - модуль упругости конкретного материала, из которого изготовлена мембрана.

В качестве материала для мембраны допустимо выбрать нержавеющую сталь. Толщина мембраны может составлять 0,1÷0,3 мм, а ее диаметр 10÷40 мм. Формула (10) выражает максимальную величину деформации в центре мембраны.

При использовании двух чувствительных элементов - оконечных электрических емкостей на обоих концах коаксиального резонатора с П-образным внутренним проводником - одному и тому же изменению давления соответствует вдвое большее изменение резонансной частоты электромагнитных колебаний резонатора, то есть имеет место повышение чувствительности данного устройства - датчика давления.

Кроме того, в этом устройстве с двумя торцевыми электрическими емкостями на концах коаксиального резонатора с П-образным внутренним проводником одно и то же давление Р может быть измерено при вдвое меньшей величине прогиба деформируемой крышки второго резонатора (мембраны), чем в случае устройства с одной такой электрической емкостью. Во-первых, это позволяет не предъявлять столь жестких требований к этим параметрам (размерам a и d, модулю упругости Е) мембраны; во-вторых, дает возможность расширить диапазон измерения давления, превышающего значения, предельные для деформируемой крышки первого резонатора, поскольку прогибы упругих стенок на ту же величину, что и ранее, теперь соответствуют более высоким значениям давления.

Таким образом, предлагаемое устройство - датчик давления - характеризуется повышение в два раза чувствительностью к измеряемому давлению, а также возможностью измерения больших, превышающих предельные для деформируемой крышки первого резонатора, значений внешнего давления при менее жестких требованиях к параметрам деформируемой крышки второго резонатора датчика, возможностью измерения существенно больших значений внешнего давления при тех же параметрах деформируемой крышки второго резонатора датчика.

Датчик давления, выполненный в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус, соосный с ним стержень, к которому на одном из его торцов подсоединен плоский диск, установленный перпендикулярно продольной оси стержня и образующий первый конденсатор с другим аналогичным параллельным ему плоским диском, соединенным другим стержнем с параллельной ему деформируемой крышкой на одном торце цилиндрического корпуса, воспринимающей измеряемое давление, к другому торцу стержня подсоединено днище на другом торце цилиндрического корпуса, и две петли связи, и второго коаксиального резонатора с аналогичными элементами первого коаксиального резонатора (корпус, соосный с ним стержень, два плоских диска и две петли связи), причем корпуса обоих резонаторов выполнены заодно, а днище первого резонатора является крышкой второго резонатора, отличающийся тем, что стержень второго резонатора выполнен П-образным и содержит подсоединенный к его второму торцу второй плоский диск, идентичный первому плоскому диску, оба этих диска установлены перпендикулярно продольной оси этого стержня и каждый из них образует конденсатор с параллельной им указанной деформируемой крышкой второго резонатора.
ДАТЧИК ДАВЛЕНИЯ
ДАТЧИК ДАВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 276.
20.05.2014
№216.012.c72e

Способ преобразования электрического сигнала в пневматический

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в пневматический в электроструйных системах автоматического управления с повышенными требованиями к быстродействию. Способ осуществляют следующим образом: электрическим сигналом...
Тип: Изобретение
Номер охранного документа: 0002516749
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.d01e

Устройство для оценки предпочтительного уровня унификации технических систем

Изобретение относится к вычислительной технике и может быть использовано для оценки предпочтительного уровня унификации технических систем (ТС) с целью минимизации затрат на проектирование и изготовление ТС при достаточном уровне их эффективности. Технический результат заключается в повышении...
Тип: Изобретение
Номер охранного документа: 0002519049
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d8c9

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано в системах управления технологическими процессами. Техническим результатом изобретения является упрощение процесса измерения информативного параметра. Устройство для измерения давления содержит генератор электромагнитных...
Тип: Изобретение
Номер охранного документа: 0002521275
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d0

Способ измерения расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения расхода газожидкостной смеси включает измерение объемного расхода по частоте вращения ротора при нулевом перепаде...
Тип: Изобретение
Номер охранного документа: 0002521282
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d8d3

Способ измерения массового расхода среды

Изобретение относится к измерительной технике и может использоваться для измерения расхода различных сред, в частности при коммерческих расчетах. Способ измерения массового расхода среды включает измерение объемного расхода по частоте вращения измерителя при нулевом перепаде давления и передачу...
Тип: Изобретение
Номер охранного документа: 0002521285
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.da87

Способ измерения покомпонентного расхода газожидкостной смеси

Изобретение относится к измерительной технике и может использоваться для контроля расхода газожидкостной смеси (ГЖС), извлекаемой, например, из буровой скважины. Способ измерения покомпонентного расхода газожидкостной смеси включает измерение объемного расхода и передачу данных вычислителю. При...
Тип: Изобретение
Номер охранного документа: 0002521721
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8e

Магниторезистивная головка-градиометр

Изобретение может быть использовано в датчиках магнитного поля и тока, головках считывания с магнитных дисков и лент, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий и вирусов), идентификации информации, записанной на магнитные ленты, считывания информации, записанной...
Тип: Изобретение
Номер охранного документа: 0002521728
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.da8f

Бесконтактный радиоволновой способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. Способ заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному закону...
Тип: Изобретение
Номер охранного документа: 0002521729
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dc1c

Флажковый ветрогенератор

Изобретение относится к области ветроэнергетики. Флажковый ветрогенератор содержит ветроприемник, выполненный в виде струн, расположенных в ветровом потоке между стойками, преобразователь колебаний струн в полезную энергию. Струны, натянутые между стойками, содержат навешанные на них полотнища...
Тип: Изобретение
Номер охранного документа: 0002522126
Дата охранного документа: 10.07.2014
Показаны записи 21-30 из 86.
20.12.2014
№216.013.1299

Концентратомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Концентратомер содержит установленный на измерительном участке трубопровода с перекачиваемой жидкостью...
Тип: Изобретение
Номер охранного документа: 0002536184
Дата охранного документа: 20.12.2014
10.05.2015
№216.013.4b38

Способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения...
Тип: Изобретение
Номер охранного документа: 0002550763
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b3b

Способ определения уровня жидкого металла в технологической емкости

Изобретение относится к измерительной технике и предназначено для измерения уровня электропроводной жидкости в различных открытых емкостях. В частности, оно может быть применено для определения уровня жидкого металла в технологических емкостях металлургического производства. Предлагается способ...
Тип: Изобретение
Номер охранного документа: 0002550766
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b47

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами по нормали к ней, принимают отраженные от этого участка поверхности...
Тип: Изобретение
Номер охранного документа: 0002550778
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d92

Устройство для измерения физических параметров диэлектрического листового материала

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство...
Тип: Изобретение
Номер охранного документа: 0002551372
Дата охранного документа: 20.05.2015
27.05.2015
№216.013.4eb9

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). В...
Тип: Изобретение
Номер охранного документа: 0002551671
Дата охранного документа: 27.05.2015
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.11.2015
№216.013.8bff

Способ измерения количества диэлектрической жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее электрофизических параметров. Предлагается способ измерения количества диэлектрического вещества...
Тип: Изобретение
Номер охранного документа: 0002567446
Дата охранного документа: 10.11.2015
+ добавить свой РИД