×
08.06.2019
219.017.757e

Результат интеллектуальной деятельности: БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ПРОЙДЕННОГО ПУТИ

Вид РИД

Изобретение

№ охранного документа
0002690842
Дата охранного документа
06.06.2019
Аннотация: Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством. Указанный результат достигается тем, что бесконтактный измеритель пройденного пути содержит СВЧ генератор электромагнитных колебаний с длиной волны λ, направленный ответвитель, циркулятор, антенну, ориентированную вперед под углом α по направлению движения транспортного средства, два смесителя, вычислительный блок, линию задержки на λ/2, компаратор и счетчик импульсов, соединенные между собой определенным образом, при этом в вычислительном блоке определяется пройденное расстояние по формуле L=nλ/2cos(α), где n - текущее показание счетчика импульсов. 3 ил.

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны радиоволновые устройства бесконтактного измерения путевой скорости и, соответственно, пройденного расстояния, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). В отличие от устройств, определяющих расстояние по числу оборотов колеса, радиоволновые доплеровские устройства позволяют определять истинную путевую скорость и расстояние, как результат интегрирования скорости по времени, которое не зависит от скольжения, движения при повороте и пробуксовывании, поскольку измерение производится бесконтактно. Эта информация о реальном перемещении относительно поверхности, очень важна для правильной оценки пройденного пути, которая может быть использована в позиционировании транспортного средства при отсутствии сигналов спутниковой навигации. Обычно радиоволновые доплеровские устройства измерения пути работают следующим образом. СВЧ радиоволны с частотой ƒ0 излучаются вперед с помощью антенны под углом α по направлению движения транспортного средства. Отраженные от поверхности дороги электромагнитные волны принимаются или этой же антенной или другой приемной антенной. Затем эти волны смешивают в смесителе с частью излучаемых волн и выделяют сигнал разностной частоты. Частота отраженных волн в процессе движения транспортного средства, поступающая на смеситель, будет отличаться от излучаемой частоты СВЧ волн на доплеровскую частоту ƒD. Эту частоту, пропорциональную скорости движения будет иметь сигнал, выделяемый на смесителе:

где λ0=с/ƒ0 - длина излучаемой электромагнитной волны, с - скорость света в воздухе. Отсюда скорость можно вычислить из уравнения:

Поскольку при движении скорость постоянно меняется, то пройденное расстояние L за время Т, будет определяться интегралом от мгновенной скорости или доплеровской частоты по времени:

То есть фактически в идеальном случае требуется точное измерение мгновенной доплеровской частоты.

Обычно ƒD определяют по максимуму спектральной плотности доплеровского сигнала, что в условиях движения объекта не может гарантировать точной оценки его скорости и перемещения. Реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α-θ/2≤αi≤α+θ/2 от подстилающей поверхности ΔƒD. Функцию распределения энергии отраженной волны от угла а можно выразить через уравнение радиолокации:

В этой формуле α - угол наклона относительно горизонтальной поверхности, θc - угол направления центра диаграммы направленности антенны (ДНА), А(α) - функция распределения ДНА, R(α)=Н/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. А(α) имеет максимум при условии равенства α=θс и симметрична относительно θс. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α=arccos(λ0ƒD/2V) из (1) в Е(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала S для данной скорости:

В результате имеет место принципиальное смещение между максимумом спектральной плотности и собственно доплеровской частотой ƒD. Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, а также влияния вибрации и неровностей дороги. Также следует отметить, что вычисление спектра требует времени для накопления данных, что приводит к дискретному измерению скорости. За время записи доплеровского сигнала скорость может меняться. В результате влияния всех этих факторов, доплеровский сигнал будет постоянно меняться по частоте и амплитуде, поэтому результат измерения будет неточным. На Фиг. 1а представлена реальная запись доплеровского сигнала за время Т=1 сек. в относительных единицах и на Фиг. 1б его периодограмма спектральной плотности в нормализованном виде по частотам F=π/ts, где ts - время выборки. Из спектра сигнала видно, что точно определить максимум распределения спектральной плотности за время записи сигнала невозможно, да и сам этот максимум не соответствует точно доплеровской частоте, по которой можно вычислить скорость и соответственно пройденный путь.

С другой стороны для целей позиционирования можно в принципе обойтись без измерения мгновенной частоты, а измерять пройденный путь, подсчитывая число полупериодов текущей доплеровской частоты - n. Тогда пройденное расстояние можно определить по формуле:

Погрешность измерения в этом случае будет дискретной и соответствует полуволне излучаемого колебания поделенной на косинус угла α. При этом в процессе вычисления пути уже нет необходимости в измерении мгновенной доплеровской частоты с последующим интегрированием.

Наиболее близким по технической сущности является, устройство измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятое за прототип. Электромагнитные колебания фиксированной частоты от генератора СВЧ излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной и смешиваются на смесителе с частью излучаемых электромагнитных колебаний, поступающих с направленного ответвителя. В результате выделяется доплеровский сигнал, путевая скорость вычисляется по частоте доплеровского сигнала, а пройденный путь определяется по интегрированию этой частоты по времени.

Недостатком устройства являются значительные ошибки в определении путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала и дискретным характером измерения. В результате пройденный путь также будет вычислен не точно. Для использования в навигационных системах, системах безопасности и для экономии расхода топлива требуется точное измерение пройденного пути. Для этого необходимо его прямое измерение, например путем подсчета числа периодов сигнала доплеровской частоты. Однако сложный спектральный состав этого сигнала не позволяет сделать это с достаточной точностью.

Техническим результатом настоящего изобретения является повышение точности измерения пути, пройденного наземным транспортным средством.

Технический результат достигается тем, что в измерителе пройденного пути, содержащем СВЧ генератор электромагнитных колебаний с длиной волны λ0, направленный ответвитель, циркулятор, антенну, ориентированную вперед под углом α по направлению движения транспортного средства, первый смеситель и вычислительный блок, причем выход генератора соединен с входом направленного ответвителя, основной выход которого соединен с первым выводом циркулятора, второй вывод соединен с антенной, а третий с первым входом смесителя, второй вход соединен с вспомогательным выводом направленного ответвителя. Дополнительно к этому содержит линию задержки на λ0/2, второй смеситель и счетчик импульсов, при этом третий вывод циркулятора соединен с первым входом второго смесителя через линию задержки, а второй его вход с вспомогательным выходом направленного ответвителя, компаратор, входы которого соединены с выходами смесителей и счетчик импульсов, входом соединенный с выходом компаратора, а выходом с вычислительным блоком, определяющим пройденное расстояние по формуле L=nλ0/2cos(α), где n - текущее показание счетчика импульсов.

На Фиг. 1а представлен реальный доплеровский сигнал в течение 1 сек., а на Фиг. 1б его периодограмма спектральной плотности в нормализованном виде.

На Фиг. 2 представлена структурная схема устройства.

На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя I(f) и Q(f), а также импульсы на выходе компаратора.

Устройство, расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, линия задержки на λ0/4 - 5, первый смеситель 6, второй смеситель 7, компаратор 8, счетчик импульсов 9, вычислительный блок 10 (см. Фиг. 2). Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 11.

Устройство работает следующим образом. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после задержки на λ0/4, что соответствует сдвигу по фазе на угол 90°. В результате на выходе первого и второго смесителя образуются доплеровские сигналы I(t) и Q(t) также сдвинутые между собой по фазе на 90° (см. фиг. 3). Затем сигналы I(t) и Q(t) подаются на входы компаратора, на выходе которого формируются короткие импульсы в моменты совпадения сигналов. Далее эти импульсы подсчитываются счетчиком, а пройденный путь определяется в вычислительном блоке по формуле (5).

Поскольку форма сигнала Q(t), сдвинутого по фазе на 90° относительно сигнала I(t), изменяющегося как по частоте, так и по амплитуде одинакова, то ошибка, вызванная неточностью подсчетов числа периодов сигнала доплеровской частоты устраняется, а точность определения пути увеличивается. При этом ошибка измерения будет постоянной и равной полуволне электромагнитного колебания, поделенной на косинус угла α. При этом фактически измеряется мгновенная доплеровская частота с максимально возможной точностью без вычисления спектра и с максимально возможным быстродействием.

Бесконтактный измеритель пройденного пути, содержащий СВЧ генератор электромагнитных колебаний с длиной волны λ, направленный ответвитель, циркулятор, антенну, ориентированную вперед под углом α по направлению движения транспортного средства, первый смеситель и вычислительный блок, причем выход генератора соединен с входом направленного ответвителя, основной выход которого соединен с первым выводом циркулятора, второй вывод соединен с антенной, а третий - с первым входом смесителя, второй вход соединен с вспомогательным выводом направленного ответвителя, отличающийся тем, что содержит линию задержки на λ/2, второй смеситель и счетчик импульсов, при этом третий вывод циркулятора соединен с первым входом второго смесителя через линию задержки, а второй его вход - с вспомогательным выходом направленного ответвителя, компаратор, входы которого соединены с выходами смесителей, и счетчик импульсов, входом соединенный с выходом компаратора, а выходом - с вычислительным блоком, определяющим пройденное расстояние по формуле L=nλ/2cos(α), где n - текущее показание счетчика импульсов.
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ПРОЙДЕННОГО ПУТИ
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ПРОЙДЕННОГО ПУТИ
БЕСКОНТАКТНЫЙ ИЗМЕРИТЕЛЬ ПРОЙДЕННОГО ПУТИ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 276.
20.10.2014
№216.012.fe9a

Способ измерения расхода газа

Изобретение относится к области автоматики и может быть использовано для измерения расхода газа с повышенной чувствительностью. Способ измерения расхода газа, состоящий в том, что создают колебания измеряемого газового потока струйным элементом с частотой, пропорциональной его расходу, затем...
Тип: Изобретение
Номер охранного документа: 0002531034
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9b

Устройство для определения высоты полого древесного цилиндрического изделия

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение стабильности измерения контролируемого параметра. Технический результат достигается тем, что в устройство для определения высоты полого древесного...
Тип: Изобретение
Номер охранного документа: 0002531035
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.0259

Способ отказоустойчивого умерения крена судна на подводных крыльях

Изобретение относится к области судостроения, а именно к автоматическому управлению угловым движением судна. Для отказоустойчивого умерения крена судна на подводных крыльях используют: блок датчиков угла поворота закрылков, датчик угла крена, блок дифференцирования, блок приводов закрылков,...
Тип: Изобретение
Номер охранного документа: 0002531999
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.025a

Отказоустойчивая система автоматического управления движением судна

Изобретение относится к области судовождения, а именно к автоматическому управлению движением судна по заданному маршруту. Отказоустойчивая система автоматического управления движением судна содержит датчик руля, датчик угловой скорости, датчик скорости хода, датчик угла курса, задатчик угла...
Тип: Изобретение
Номер охранного документа: 0002532000
Дата охранного документа: 27.10.2014
27.11.2014
№216.013.0be2

Расходомер

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль...
Тип: Изобретение
Номер охранного документа: 0002534450
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0be3

Радиоволновое фазовое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Радиоволновое фазовое устройство для определения уровня жидкости содержит генератор СВЧ фиксированной частоты, подсоединенный через...
Тип: Изобретение
Номер охранного документа: 0002534451
Дата охранного документа: 27.11.2014
20.12.2014
№216.013.1102

Система идентификации гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судостроения, а именно к области автоматического управления движением судов. Система идентификации гидродинамических коэффициентов математической модели движения судна содержит рулевой привод, датчики: угловой скорости, курса судна, угла перекладки руля, боковой...
Тип: Изобретение
Номер охранного документа: 0002535777
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.11ec

Система отказоустойчивого управления движением корабля

Изобретение относится к области судостроения, а именно к автоматическому управлению движением корабля. Система отказоустойчивого управления движением корабля содержит блок дифференцирования, датчик руля, три датчика глубины, датчик угла дифферента, рулевой привод, задатчик глубины угла...
Тип: Изобретение
Номер охранного документа: 0002536011
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1285

Устройство для определения концентрации смеси веществ

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Устройство для определения концентрации смеси веществ содержит установленный на измерительном участке...
Тип: Изобретение
Номер охранного документа: 0002536164
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1299

Концентратомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Концентратомер содержит установленный на измерительном участке трубопровода с перекачиваемой жидкостью...
Тип: Изобретение
Номер охранного документа: 0002536184
Дата охранного документа: 20.12.2014
Показаны записи 41-41 из 41.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД