×
08.06.2019
219.017.7577

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области техники измерений характеристик сверхширокополосного (СШП) электромагнитного излучения (ЭМИ) и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения. Технический результат - повышение точности измерения, а также возможность измерения энергии СШП ЭМИ, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммы направленности их излучающих систем. В способе измерения энергии СШП ЭМИ, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ с последующей передачей зарегистрированных данных на ЭВМ для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация: где Е1(θ, 0, t), E2(θ, π, t), E3(θ, π/2, t), E4(θ, 3π/2, t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2 соответственно. Энергия СШП ЭМИ вычисляется, используя выражение где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,y(θi, ϕ, tk) - напряженность электрического поля на i-й измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Z - волновое сопротивление свободного пространства, n - число измерительных позиций, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса. 1 ил.

Изобретение относится к области техники измерений характеристик сверхширокополосного электромагнитного излучения и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения.

Термином «сверхширокополосное электромагнитное излучение» (СШП ЭМИ) обозначается класс коротких электромагнитных импульсных сигналов длительностью менее 1 не (в англоязычной литературе используется термин «ultra-wide band (UWB) short pulse»).

Известна установка, реализующая способ измерения плотности потока мощности электромагнитного поля (Патент РФ №2 353 942, МПК G01R 29/08, опубликовано: 27.04.2009) по методу сравнения при работе измеряемой и эталонной антенн на передачу, включающая генератор ВЧ-сигналов, второй выход которого соединен с измерителем мощности, а первый - с устройством переключения антенн, к первому выходу которого подключена измеряемая антенна, а ко второму выходу - эталонная антенна, при этом измеряемая и эталонная антенны посредством излучаемого электромагнитного поля соединены с приемной антенной приемного устройства, размещенного в экранированной камере, которое измеряет напряженности полей, создаваемых измеряемой и эталонной антеннами, а затем вычисляет плотность потока мощности электромагнитного поля, создаваемую измеряемой антенной, с последующим отображением на дисплее.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, отсутствие измерения энергии электромагнитного поля, прошедшую через сферическую поверхность, ограниченную заданным телесным углом.

Известно устройство, реализующее способ измерения плотности потока энергии электромагнитного поля (Патент РФ №2441 248, МПК G01R 29/08, опубликовано: 27.01.2012), имеющее две антенны и два измерительных канала - для электрического и магнитного полей. В каждом канале присутствуют усилители, звенья частотной коррекции и амплитудные детекторы. Сигналы с данных каналов поступают на цифроаналоговый преобразователь, результирующий числовые значения величин зарегистрированных сигналов электромагнитного поля, которые анализируются в процессоре, и с помощью множительного логического элемента И рассчитывается плотность потока энергии электромагнитного поля. Результат расчетных значений индуцируется на жидкокристаллический алфавитно-цифровой дисплей.

Недостатками данного технического решения являются невозможность измерения плотности потока энергии сверхширокополосного электромагнитного излучения, а также излучения с высокими значениями амплитуды напряженностей, отсутствие измерения энергии электромагнитного поля, прошедшую через интересующую нас сферическую поверхность, ограниченную заданным телесным углом.

Известна мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения (А.С. Белов, Д.А. Коконин. Мобильная система удаленной регистрации параметров сверхширокополосного электромагнитного излучения // Технологии ЭМС.-2017. - №2(61). - С. 36-43.), взятая за прототип. Данная система реализует способ измерения энергии сверхширокополосного электромагнитного излучения путем регистрации только напряженности электрического поля, т.к. регистрируемые электромагнитные импульсы имеют субнаносекундную длительность и при условии отсутствия переотражений на временном интервале наблюдения, электрическое и магнитное поля СШП ЭМИ связаны соотношением E/H=120⋅π. Ее канал обработки сигнала состоит из приемной антенны, соединенной с расширителем импульсов, который с помощью линии задержки соединен со входом цифрового стробоскопического осциллографа, связанным с портативным персональным компьютером. Синхронизация осциллографа осуществляется от соответствующего выхода расширителя импульсов. Все оборудование кроме приемной антенны помещено в экранированную кабину с целью защиты от воздействия мощных электромагнитных полей и паразитных помеховых сигналов. Приемная антенна представляет собой измерительный преобразователь напряженности импульсного электрического поля, переходная характеристика которого имеет форму близкую к ступенчатой. Поэтому, измерительный преобразователь осуществляет преобразование сигнала напряженности электрического поля в сигнал напряжения U(t) той же формы с минимальными искажениями - , где Kпр - коэффициент преобразования измерительного преобразователя, - радиус-вектор в точку постановки измерительного преобразователя. Размещение измерительного преобразователя вдоль эквипотенциали исследуемого поля производят с помощью лазерного дальномера и электронного теодолита, входящих в состав системы, что позволяет получить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения с последующим пересчетом в энергию излучения, который реализуется по следующей формуле с помощью программного обеспечения, установленного на персональном компьютере:

где Z - волновое сопротивление свободного пространства (Z=377 Ом), θi, -угол между осью излучения и направлением на i-ую измерительную позицию, Δθ - угловой шаг размещения измерительных позиций, E(θi,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, Я - расстояние до раскрыва излучающей системы генератора СНЯТ ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Недостатками данного технического решения являются возможность регистрации только периодически повторяющихся импульсов СШП ЭМИ, понижение точности измерения из-за наличия расширителя импульсов с линией задержи, возможность измерения энергии СШП ЭМИ от генераторов только с симметричной диаграммой направленности их излучающих систем.

Техническим результатом предлагаемого технического решения являются повышение точности измерения, а также возможность измерения энергии сверхширокополосного электромагнитного излучения, в том числе в виде одиночных электромагнитных импульсов, от генераторов с произвольной формой диаграммой направленности их излучающих систем.

Технический результат достигается тем, что в способе измерения энергии СШП ЭМИ, включающем регистрацию напряженности импульсов электрического поля сверхширокополосного электромагнитного излучения с использованием измерительного преобразователя и широкополосного цифрового осциллографа, регистрация напряженности импульсов электрического поля СШП ЭМИ производится в двух взаимно перпендикулярных плоскостях путем поворота излучающей системы генератора СШП ЭМИ, с последующей передачей зарегистрированных данных на ЭВМ, для получения значений напряженности импульсов электрического поля. В недостающих точках пространства для определения напряженности импульсов электрического поля СШП ЭМИ используется следующая аппроксимация:

где E1(θ,0,t), Е2(θ,π,t), E3(θ,π/2,t), Е4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно (в сферической системе координат). Энергия сверхширокополосного электромагнитного излучения вычисляется, используя выражение

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

На фигуре представлена схема устройства для измерения энергии СШП ЭМИ, включающая излучающую систему генератора СШП ЭМИ 1, измерительный преобразователь 2, экранированную кабину 5, в которую помещены широкополосный цифровой осциллограф 3 и ЭВМ 4.

Предлагаемый способ измерения энергии СШП ЭМИ реализуется следующим образом.

Измерительный преобразователь 2 осуществляет преобразование напряженности импульсов электрического поля СШП ЭМИ, создаваемого излучающей системой 1, в сигнал напряжения той же формы с минимальными искажениями. Регистрация импульсов напряжения на выходе измерительного преобразователя осуществляется с помощью широкополосного цифрового осциллографа 3. Для защиты от воздействия излучения осциллограф размещается в экранированной кабине 5.

Выражение для энергии излучения представляется в виде:

где Z - волновое сопротивление свободного пространства, - радиус-вектор в точку наблюдения с координатами (R, θ, ϕ) в сферической системе координат.

При проведении измерений в дальней зоне на расстоянии R от выходной апертуры излучающей системы генератора СШП ЭМИ 1 выражение (2) можно модифицировать следующим образом:

Таким образом, общая энергия излучения СШП ЭМИ пропорциональна интегралу от распределения квадрата напряженности поля излучения в пространстве. Измерение распределения напряженности электрического поля во всех точках пространства крайне трудоемко и невозможно без применения специальных средств, поэтому целесообразно проводить измерения только в двух взаимно перпендикулярных плоскостях, а для получения значений в недостающих точках использовать следующую аппроксимацию:

где E1(θ,0,t), E2(θ,π,t), Е3(θ,π/2,t), E4(θ,3π/2,t) - измеренные зависимости напряженности электрического поля от полярного угла θ при значениях азимутального угла ϕ=0, π, π/2, 3π/2, соответственно.

Для ограниченного числа измерительных позиций и с учетом аппрок-симации (4) уравнение (3) имеет вид:

где θi - угол между осью излучения и направлением на измерительный преобразователь, Δθ - угловой шаг установки измерительных позиций, Ex,yi,ϕ,tk) - напряженность электрического поля на i-ой измерительной позиции в момент времени tk, R - расстояние до раскрыва излучающей системы генератора СШП ЭМИ, Δt - шаг временной дискретизации осциллографа, N - число измерительных позиций, K - количество временных дискретов, зависящее от выбранного временного окна, равного длительности исследуемого импульса.

Поворот оси излучения генератора СШП ЭМИ на углы θi позволяет поучить зависимость амплитудно-временных параметров излучения от угла относительно оси излучения, а поворот излучающей системы вдоль ее оси на углы 0, π, π/2, 3π/2 - несколько таких зависимостей во взаимно перпендикулярных плоскостях. Измеренные таким образом данные передаются на ЭВМ, где с помощью соответствующего программного обеспечения по формуле (5) реализуется расчет энергии СШП ЭМИ.


СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
СПОСОБ ИЗМЕРЕНИЯ ЭНЕРГИИ СВЕРХШИРОКОПОЛОСНОГО ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 591-600 из 796.
01.11.2019
№219.017.dc35

Способ калибровки и стабилизации параметров спектрометра γ-излучения

Использование: для калибровки и стабилизации параметров спектрометра γ-излучения. Сущность изобретения заключается в том, что калибровку и стабилизацию осуществляют от одного и того же встроенного в блок реперного источника γ-излучения, в качестве которого используют радионуклид Th с...
Тип: Изобретение
Номер охранного документа: 0002704564
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd7e

Устройство адаптивного преобразования данных в режиме реального времени

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей. Устройство адаптивного преобразования данных в режиме реального времени содержит: блок кодирования, вычислительное ядро, первая группа входов/выходов которого...
Тип: Изобретение
Номер охранного документа: 0002704879
Дата охранного документа: 31.10.2019
07.11.2019
№219.017.dedd

Взрывное устройство

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между...
Тип: Изобретение
Номер охранного документа: 0002705122
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
13.11.2019
№219.017.e107

Устройство разделения плавучего прибора на герметичные отсеки

Изобретение относится к области подводной техники и может быть использовано в составе дрейфующего автономного гидроакустического прибора. Устройство разделения плавучего прибора на герметичные отсеки содержит герметичный силовой корпус, состоящий из отсеков - аппаратурного и буйкового, поршня,...
Тип: Изобретение
Номер охранного документа: 0002705722
Дата охранного документа: 11.11.2019
14.11.2019
№219.017.e19d

Способ нанесения покрытий на изделия из материалов, интенсивно окисляющихся в атмосфере воздуха, и установка для его реализации

Изобретение может быть использовано для нанесения функциональных и защитных металлических покрытий, а именно Cu, Ti, Zn, Nb, Mo, W, Sn, Cr, V, Cd, Zr, и может быть использовано в машиностроительной промышленности. Способ нанесения металлического покрытия на изделия из материала, интенсивно...
Тип: Изобретение
Номер охранного документа: 0002705834
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e2f8

Низковольтный электродетонатор

Изобретение относится к области безопасных средств взрывания, а именно к низковольтным мостиковым электродетонаторам с использованием вторичных (бризантных) взрывчатых веществ (ВВ), и может быть применено в качестве малогабаритного средства инициирования зарядов ВВ промышленного назначения,...
Тип: Изобретение
Номер охранного документа: 0002706151
Дата охранного документа: 14.11.2019
16.11.2019
№219.017.e30b

Коллиматор для жесткого рентгеновского излучения

Изобретение относится к коллиматору для жесткого рентгеновского излучения. Тело коллиматора сформировано набором пластин толщиной d, выполненных из материала с высоким коэффициентом поглощения рентгеновского излучения, к каждой такой пластине с одной стороны прикреплены 2i+1, где i от 1 до n -...
Тип: Изобретение
Номер охранного документа: 0002706219
Дата охранного документа: 15.11.2019
19.11.2019
№219.017.e3a1

Способ изготовления, хранения и применения мобильного портативного модуля для ремонта повреждений в транспортируемых контейнерах с токсичными материалами

Группа изобретений относится к области технологий обеспечения безопасных методов хранения и транспортировки опасных материалов. Способ изготовления портативного модуля для ремонта повреждений включает первоначальное раздельное размещение реагентов в индивидуальных герметичных объемах для...
Тип: Изобретение
Номер охранного документа: 0002706336
Дата охранного документа: 18.11.2019
Показаны записи 1-1 из 1.
10.05.2014
№216.012.c27e

Способ модификации ионосферной плазмы

Изобретение относится к области электричества, касается способа модификации ионосферной плазмы, который может быть использован для исследования околоземного пространства, задач дальней НЧ радиосвязи, а также в целях радиопротиводействия. Способ модификации ионосферной плазмы включает...
Тип: Изобретение
Номер охранного документа: 0002515539
Дата охранного документа: 10.05.2014
+ добавить свой РИД