×
07.06.2019
219.017.7567

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, в частности к системе терморегулирования космического аппарата. Способ диагностики работоспособности системы терморегулирования космического аппарата включает периодический контроль работы системы в условиях эксплуатации. Проводятся периодические телеметрические измерения в процессе эксплуатации температуры компенсатора объема и температуры других участков жидкостного контура. При каждом контроле определяют суммарную продолжительность непрерывного повышения температуры компенсатора объема от момента включения в работу электрообогревателя до выключения его в рабочем допустимом диапазоне температур. Сравнивают вышеуказанную суммарную продолжительность с аналогичной продолжительностью, полученной при наземных испытаниях. Судят о герметичности жидкостного контура системы терморегулирования на основании взаимного соответствия их с заданной нормой отличия. Достигается повышение работоспособности космического аппарата. 4 ил.

Изобретение относится к способам контроля работоспособности систем терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. Известна СТР спутника, выполненная на базе патента Российской Федерации (РФ) №2209750 [1]. СТР [1] (см. фиг. 1) включает в себя основной и резервный жидкостные контуры (т.е. сдублированные идентичные контуры), заправленные теплоносителем Л3-ТК-2 (на фиг. 1 второй жидкостный контур условно не показан). Циркуляцию теплоносителя в жидкостном контуре 1 (каждом) осуществляет электронасосный агрегат 1.1 (ЭНА). Для обеспечения бескавитационной работы ЭНА 1.1 (для поддержания необходимого давления на входе в ЭНА) жидкостный тракт на его входе соединен с заправленной необходимым запасом теплоносителя жидкостной полостью 1.4.1 компенсатора объема 1.4. Его герметичная газовая полость 1.4.2 разъединена от жидкостной полости сильфоном 1.4.3, заправлена двухфазным рабочем телом - фреоном 141 в, который обеспечивает, например, в результате периодической работы электрообогревателя 1.4.4, установленного на корпусе компенсатора объема 1.4 (покрытого теплоизоляцией 1.5), давление теплоносителя от 0,65 до 0,95 кгс/см2 (в результате нагрева компенсатора объема 1.4 от 20 до 30°С: при температуре 20°С включается в работу электрообогреватель 1.4.4, а при 30°С - выключается. Затем происходит, из-за утечек тепла через теплоизоляцию 1.5, охлаждение компенсатора объема 1.4 (до 20°С) и снова при температуре 20°С включается электрообогреватель 1.4.4 до достижения 30°С и так далее процесс продолжается). Таким образом, ЭНА 1.1 функционирует нормально, т.е. СТР работоспособна, если обеспечивается требуемое рабочее давление на его входе, а это возможно, если жидкостный контур 1 герметичен и сильфон 1.4.3 компенсатора объема 1.4 не растянулся полностью. Силь-фон может растянуться полностью только в случае негерметичности жидкостного контура: в этом случае запас теплоносителя в жидкостной полости 1.4.1 израсходуется - сильфон 1.4.3 садится на упор (см. фиг. 2) и изменения температуры и давления в газовой полости 1.4.2 в связи с работой электрообогревателя 1.4.4 не сказывается на давлении в жидкостной полости 1.4.1 и, следовательно, на входе в ЭНА 1.1 давление уменьшается до давления кипения теплоносителя и начинается кавитация ЭНА 1.1 (отказ СТР) и нарушается тепловой режим КА.

Таким образом, в процессе эксплуатации КА на орбите важно предсказать работоспособность СТР по параметру «Жидкостный контур герметичен» для данного промежутка времени контроля с целью своевременного переключения на резервный жидкостный контур СТР.

В известной СТР [1] с целью, например, экономии массы, предусмотрены только телеметрические датчики температуры, а датчики давления теплоносителя в жидкостных контурах на входе в ЭНА и датчики положения сильфона компенсатора объема не предусмотрены и не представляется возможным предсказать герметичность жидкостного контура. Следовательно, имея температурную информацию только по датчикам температуры, необходимо диагностировать работоспособность СТР по параметру «Жидкостный контур герметичен».

Таким образом, существенным недостатком способа диагностики работоспособности известной СТР [1] по параметру «Жидкостный контур герметичен» является отсутствие достоверного контроля герметичности жидкостного контура 1 по данным периодических телеметрических измерений температуры различных его участков 1.6-1.10, в том числе температуры 1.6 компенсатора объема 1.4.

Целью изобретения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе диагностики работоспособности системы терморегулирования космического аппарата в условиях эксплуатации, содержащей жидкостный контур, включающий компенсатор объема с установленным на его корпусе электрообогревателем, имеющий газовую полость, заправленную двухфазным рабочим телом, и разделенную от нее сильфоном жидкостную полость, заправленную жидким теплоносителем с запасом для компенсации возможных утечек его из контура, включающий периодический контроль работы системы - периодические телеметрические измерения в процессе эксплуатации температуры компенсатора объема и температуры других участков жидкостного контура, причем при каждом контроле определяют суммарную продолжительность непрерывного повышения температуры компенсатора объема от момента включения в работу электрообогревателя до выключения его в рабочем допустимом диапазоне температур, например, от 20 до 30°С, затем сравнивают вышеуказанную суммарную продолжительность с аналогичной продолжительностью, полученной при наземных испытаниях, и судят о герметичности жидкостного контура системы терморегулирования на основании взаимного соответствия их с заданной нормой отличия, что и является, по мнению авторов, существенным отличительными признаками представленного авторами технического решения.

В результате анализа проведенного авторами известной патентной и научно-технической литературы предложенное сочетание существенных признаков заявляемого технического решения в известных источниках не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявленном способе диагностики работоспособности системы терморегулирования космического аппарата.

На фиг. 1-4 приведены принципиальные схемы реализации предложенного авторами технического решения.

На фиг. 1 приведена принципиальная схема СТР КА, работоспособность которой определяют, используя предложенный способ диагностики, где поз. 1 - жидкостный контур, заправленный жидким теплоносителем; 1.1 - электронасосный агрегат; 1.2, 1.3 - сотовые панели с встроенными жидкостными коллекторами; 1.4 - компенсатор объема (установлен внутри приборного отсека, поверхности которого при одинаковом режиме работы полезной нагрузки КА имеют относительно стабильную среднюю температуру, например, из диапазона (10-15)°С, и утечки тепла (1-2 Вт) от компенсатора объема, покрытого теплоизоляцией, относительно небольшие и практически постоянные; 1.4.1 - жидкостная полость; 1.4.2 - газовая полость; 1.4.3 - сильфон (положение сильфона соответствует режиму работы СТР, когда ее жидкостный контур герметичен); 1.4.4 - электрообогреватель (с постоянной мощностью, например, 7 Вт); 1.5 - теплоизоляция; 1.6 - 1.10 - датчики температуры.

На фиг. 2 изображена принципиальная схема СТР для режима работы СТР, когда сильфон 1.4.3 компенсатора объема 1.4 из-за недопустимых утечек теплоносителя растянулся полностью.

На фиг. 3 изображена диаграмма повышения температуры компенсатора объема 1.4 (t1.4,°С) по показаниям датчика температуры 1.6 для режима работы согласно фиг. 1 (жидкостный контур 1 СТР герметичен): при температуре компенсатора объема t1.4=20°С электрообогреватель 1.4.4 включен в работу, а при t1.4=30°С - выключен при соответствующих моментах времени τвкл. 1.4.4 и τвыкл. 1.4.4. При этом для данного режима работы СТР (жидкостный контур 1 СТР герметичен) суммарная продолжительность повышения температуры компенсатора объема, при наземных испытаниях и в начале эксплуатации КА на орбите для некоторых типов космических аппаратов равна Δτ1.4.4 = (270±5) минут.

На фиг. 4 изображена диаграмма повышения температуры компенсатора объема 1.4 (t1.4,°С) по показаниям датчика температуры 1.6 для режима работы согласно фиг. 2 (жидкостный контур 1 СТР негерметичен): при температуре компенсатора объема t1.4 = 20°С электрообогреватель 1.4.4 включен в работу, а при t1.4 = 30°С - выключен при соответствующих моментах времени τвкл. 1.4.4 и τвыкл. 1.4.4. При этом для данного режима работы СТР (жидкостный контур 1 СТР негерметичен) суммарная продолжительность повышения температуры компенсатора объема равна Δτ1.4.4 = (235±5) минут.

Предложенный способ диагностики работоспособности СТР КА включает в себя нижеуказанные операции, выполняемые в следующей последовательности:

1 При наземных испытаниях (например, при испытаниях КА в термобарокамере - имитируются условия орбитального функционирования) и в условиях орбитального функционирования при стабилизированном режиме работы приборов КА периодически, например, один раз в ≈30 дней, осуществляют контроль работы СТР, используя данные телеметрических измерений температуры компенсатора объема и температуры других участков жидкостного контура, для чего, например, в течение суток с частотой опроса, например, один час, фиксируют телеметрические данные по вышеуказанным температурам.

2 Строят диаграмму (см. фиг. 3 и фиг. 4) изменения непрерывного повышения температуры компенсатора объема 1.4 по данным телеметрических измерений датчика температуры 1.6 в допустимом диапазоне непрерывной работы электрообогревателя, например, от 20 до 30°С: при температуре компенсатора объема 20°С электрообогреватель включается в работу и выключается электрообогреватель при температуре компенсатора объема 30°С.

3 Определяют суммарную продолжительность непрерывного повышения температуры компенсатора объема от момента включения в работу электрообогревателя до выключения его в рабочем допустимом диапазоне температур, например, от 20 до 30°С.

4 Проведенный анализ работы компенсатора объема, примененного, например, в КА тяжелого класса, показал, что теплоемкость компенсатора объема при температуре 25°С составляет 7670 Дж/К, в том числе теплоемкость теплоносителя Л3-ТК-2 (2,55 кг), имеющегося в жидкостной полости компенсатора объема, равна 4770 Дж/К. При эксплуатации допустимы утечки теплоносителя не более 0,55 кг - это означает, что теплоемкость теплоносителя, имеющегося в жидкостной полости, может уменьшиться с 4770 Дж/кг до 3740 Дж/кг, т.е. теплоемкость компенсатора объема уменьшится с 7670 Дж/кг до 6640 Дж/кг. Следовательно, согласно законам физики в случае вышеуказанных утечек теплоносителя суммарная продолжительность изменения температуры компенсатора объема с течением времени постепенно уменьшится на .

5 Сравнивают определенную в п. 3 суммарную продолжительность повышения температуры компенсатора объема с аналогичной продолжительностью по данным наземных испытаний - как показывает анализ опытных данных, (см. п. 4), разница (уменьшения продолжительности) должна быть не более 13% - в этом случае можно утверждать, что жидкостный контур СТР герметичен - утечки теплоносителя не превышают заданных технологических норм при изготовлении, и СТР работоспособна (в случае недопустимых утечек теплоемкость компенсатора уменьшилась бы в результате уменьшения объема теплоносителя в его жидкостной полости более допустимого и вышеуказанная суммарная продолжительность уменьшалась бы, например, более, чем в 1,15 раза). Сравнивают также определенные по п. 3 суммарные продолжительности с данными предыдущих контролей и по темпу уменьшения продолжительностей предсказывают, когда будет неработоспособна СТР.

6 В случае, если вышеуказанная разница более 13%, то контроль работы СТР осуществляют ежесуточно: и если ЭНА начинает работать с неустойчивым расходом теплоносителя, то переходят на работу вторым (резервным) жидкостным контуром, исключив тем самым недопустимое изменение температур теплоносителя участков жидкостного контура под приборами КА.

Таким образом, предложенное авторами изобретение обеспечивает при эксплуатации достоверную диагностику работоспособности СТР КА для данного промежутка времени телеметрического контроля по параметру «Жидкостный контур герметичен», тем самым достигается цель изобретения.

Способ диагностики работоспособности системы терморегулирования космического аппарата, содержащей жидкостный контур, включающий компенсатор объема с установленным на его корпусе электрообогревателем, имеющий газовую полость, заправленную двухфазным рабочим телом, и разделенную от нее сильфоном жидкостную полость, заправленную жидким теплоносителем с запасом для компенсации возможных утечек его из контура, включающий периодический контроль работы системы в условиях эксплуатации - периодические телеметрические измерения в процессе эксплуатации температуры компенсатора объема и температуры других участков жидкостного контура, отличающийся тем, что при каждом контроле определяют суммарную продолжительность непрерывного повышения температуры компенсатора объема от момента включения в работу электрообогревателя до выключения его в рабочем допустимом диапазоне температур, например, от 20 до 30°С, затем сравнивают вышеуказанную суммарную продолжительность с аналогичной продолжительностью, полученной при наземных испытаниях, и судят о герметичности жидкостного контура системы терморегулирования на основании взаимного соответствия их с заданной нормой отличия.
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 41-50 из 193.
10.02.2016
№216.014.c2bb

Способ электропитания космического аппарата

Заявленное изобретение относится к способам питания космического аппарата. Для электропитания космического аппарата обеспечивают совместную работу солнечной батареи и литий-ионной аккумуляторной батареи на бортовую нагрузку, заряжают аккумуляторную батарею от солнечной батареи, измеряют и...
Тип: Изобретение
Номер охранного документа: 0002574475
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c419

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА) с тепловой нагрузкой от 13 до 18 кВт. СТР состоит из замкнутых жидкостных контуров и тепловых труб (ТТ), а также раскрываемых панелей радиатора (РПР). Каждый контур содержит сообщенные подконтуры модулей...
Тип: Изобретение
Номер охранного документа: 0002574499
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c538

Способ компоновки полезной нагрузки и устройство для его реализации

Изобретение относится к космической технике и может быть использовано при компоновке полезной нагрузки (ПН) в космических аппаратах (КА). Устройство компоновки ПН содержит КА и выполнено в виде разделяемой силовой трубы изогридной сетчатой структуры с функцией силовой конструкции корпуса КА, и...
Тип: Изобретение
Номер охранного документа: 0002574103
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.ca66

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников. В жидкостном контуре СТР установлен двухступенчатый электронасосный агрегат (ЭНА) с последовательно расположенными рабочими колесами, вращающимися с частотой...
Тип: Изобретение
Номер охранного документа: 0002577925
Дата охранного документа: 20.03.2016
10.03.2016
№216.014.ca77

Система разделения

Изобретение относится к космонавтике и может быть использовано для разделения силовых конструкций космических аппаратов. Система разделения (СР) содержит силовые узлы в виде двух силовых элементов, охватывающих шпангоуты разделяемых конструкций с обеспечением направления вектора нагрузки через...
Тип: Изобретение
Номер охранного документа: 0002577157
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cafe

Система терморегулирования космического аппарата

Изобретение относится к системам терморегулирования (СТР) космических аппаратов, например телекоммуникационных спутников. СТР содержит жидкостный контур теплоносителя с электронасосным агрегатом (ЭНА) и компенсатором объема (КО). Жидкостная полость КО соединена с контуром вблизи входа в ЭНА, а...
Тип: Изобретение
Номер охранного документа: 0002577926
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc15

Способ управления автономной системой электроснабжения космического аппарата

Изобретение относится к электротехнике, а именно к системам электроснабжения (СЭС) космических аппаратов (КА). Технический результат - повышение надежности процесса восстановления работоспособности СЭС после возникновения аварийных ситуаций. Предлагается способ управления автономной системой...
Тип: Изобретение
Номер охранного документа: 0002577632
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cf5d

Панель солнечной батареи

Изобретение относится к устройствам энергопитания космического аппарата, предназначенным для преобразования солнечной энергии в электрическую с максимальной эффективностью и удельной мощностью. Панель солнечной батареи содержит верхнюю и нижнюю обшивки и элементы, соединяющие их на требуемом...
Тип: Изобретение
Номер охранного документа: 0002575182
Дата охранного документа: 20.02.2016
27.05.2016
№216.015.4411

Способ коррекции собственной температурной зависимости кремниевых фотоэлектрических преобразователей

Изобретение относится к способам коррекции собственной температурной зависимости кремниевых фотопреобразователей (ФЭП) и может быть использовано при тепловакуумных испытаниях (ТВИ) космического аппарата (КА) или его составных частей с использованием имитатора солнечного излучения. В...
Тип: Изобретение
Номер охранного документа: 0002585613
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.465e

Опорное устройство

Изобретение относится к машиностроению и может быть использовано в качестве опорного устройства для космического аппарата при проведении его наземных испытаний. Опорное устройство содержит нижнее основание с регулируемыми по высоте винтовыми опорными узлами, устанавливаемое на него верхнее...
Тип: Изобретение
Номер охранного документа: 0002586014
Дата охранного документа: 10.06.2016
Показаны записи 41-50 из 52.
11.03.2019
№219.016.d80d

Сотовая панель

Изобретение относится к конструкции систем терморегулирования космических аппаратов, преимущественно телекоммуникационных спутников с длительным сроком эксплуатации. Панель содержит два независимых встроенных параллельных тракта теплоносителя, приклеенных своими полками к параллельно...
Тип: Изобретение
Номер охранного документа: 0002346860
Дата охранного документа: 20.02.2009
11.03.2019
№219.016.d95f

Способ компоновки космического аппарата

Изобретение относится преимущественно к телекоммуникационным спутникам с мощностью энергопотребления на уровне 1-2,5 кВт. Согласно изобретению космический аппарат (спутник) выполняют из двух модулей: полезной нагрузки и служебных систем. Приборы устанавливают на внутренних обшивках их...
Тип: Изобретение
Номер охранного документа: 0002353553
Дата охранного документа: 27.04.2009
13.06.2019
№219.017.80c7

Антенна мобильной установки

Изобретение относится к области радиолокационной техники, в частности к антеннам мобильных установок с приемно-передающими модулями (ППМ) со сравнительно высокими тепловыделениями, например для антенн с активными фазированными антенными решетками (АФАР). Антенна мобильной установки содержит...
Тип: Изобретение
Номер охранного документа: 0002691277
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.85ef

Способ изготовления жидкостного тракта системы терморегулирования космического аппарата

Изобретение относится к системам терморегулирования космических аппаратов, в жидкостном тракте которых применяется гидроаккумулятор с герметизированной газовой полостью, заправленной двухфазным рабочим телом. Способ включает сборку жидкостного тракта и контроль степени его герметичности. После...
Тип: Изобретение
Номер охранного документа: 0002398718
Дата охранного документа: 10.09.2010
01.09.2019
№219.017.c575

Способ изготовления жидкостного контура системы терморегулирования космического аппарата

Изобретение относится к области космической техники, в частности к изготовлению системы терморегулирования. Способ изготовления жидкостного контура системы терморегулирования космического аппарата включает гидравлическое соединение контура с устройством заправки; заполнение и промывку...
Тип: Изобретение
Номер охранного документа: 0002698503
Дата охранного документа: 28.08.2019
01.09.2019
№219.017.c5a3

Способ испытаний системы терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к наземным испытаниям космических систем. Способ испытания системы терморегулирования космического аппарата включает следующие действия. Заполнение трактов системы жидким теплоносителем. Отстыковка компенсационного устройства. Соединение...
Тип: Изобретение
Номер охранного документа: 0002698573
Дата охранного документа: 28.08.2019
03.09.2019
№219.017.c6b1

Система терморегулирования космического аппарата

Изобретение относится к космической технике, в частности к системам терморегулирования. Система терморегулирования космического аппарата содержит два сдублированных одинаковых жидкостных контура. В каждом жидкостном контуре установлен терморегулятор расхода теплоносителя прямого действия. Он...
Тип: Изобретение
Номер охранного документа: 0002698967
Дата охранного документа: 02.09.2019
25.04.2020
№220.018.18ab

Способ возведения буронабивной сваи в грунтоцементной оболочке

Изобретение относится к области строительства, а именно к возведению буронабивных свай в непосредственной близости от стоящих зданий и сооружений, и может быть использовано при формировании свайных фундаментов в слабых грунтах, а также для укрепления слабых грунтов использованием струйной...
Тип: Изобретение
Номер охранного документа: 0002720047
Дата охранного документа: 23.04.2020
04.07.2020
№220.018.2f5e

Способ возведения буронабивной сваи с грунтоцементными уширениями в зоне слабых грунтов и устройство для его осуществления (варианты)

Изобретение относятся к области строительства, а именно к способам закрепления грунтов оснований зданий и сооружений, и может быть использовано при формировании свайных фундаментов сооружений различного назначения в слабых водонасыщенных грунтах. Способ возведения буронабивной сваи с...
Тип: Изобретение
Номер охранного документа: 0002725363
Дата охранного документа: 02.07.2020
06.08.2020
№220.018.3cf1

Система терморегулирования космического аппарата

Изобретение относится к системе терморегулирования (СТР) космического аппарата. СТР содержит два замкнутых независимых жидкостных тракта с теплоносителем (один из них служит резервным). Каждый тракт включает в себя терморегулятор расхода теплоносителя с чувствительным элементом, радиатор,...
Тип: Изобретение
Номер охранного документа: 0002729149
Дата охранного документа: 04.08.2020
+ добавить свой РИД