×
04.06.2019
219.017.735f

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ ДАТЧИКОВ МАССОВОГО РАСХОДА ВОЗДУХА АВТОМОБИЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области эксплуатации машин и может быть использовано при калибровке датчиков массового расхода воздуха автомобилей, оборудованных микропроцессорной системой управления двигателем внутреннего сгорания. Калибровку осуществляют следующим образом: эталонный и проверяемый датчики устанавливают на стенде последовательно, подают поток воздуха вентилятором через оба датчика. Осуществляют относительную оценку сигналов с эталонного и проверяемого датчиков, обеспечивая дискретное регулирование скорости потока воздуха при помощи регулятора вентилятора и температуры воздуха. Получают разность сигналов эталонного и проверяемого датчиков. По полученной разности калибруют проверяемый датчик. Технический результат: автоматизация процесса и сокращение продолжительности калибровки проверяемых датчиков. Технический результат – сокращение продолжительности калибровки и испытаний и обеспечение точности калибровки.

Изобретение относится к области эксплуатации машин и может быть использовано при калибровке датчиков массового расхода воздуха (ДМРВ) автомобилей, оборудованных микропроцессорной системой управления двигателем внутреннего сгорания (ДВС).

Известен способ диагностирования ДМРВ с использованием цифрового мультиметра (A. Tranter. Руководство по электрическому оборудованию автомобилей. Санкт-Петербург, ЗАО «Алфамер Паблишинг», 1998), при реализации которого осуществляют измерение напряжения, тока, сопротивления на выводах разъема работающего датчика массового расхода воздуха.

Существенными недостатками способа являются низкая достоверность и точность измерения, ограниченность проверки ДМРВ на разных режимах.

Известен способ проверки мотор-тестером МТ-4 с приставкой KRP-4M (Программа диагностическая мотор-тестер МТ-4. Приставка KRP-4M. Руководство пользователя. Самара: НПП «Новые технологические системы», 2002), при реализации которого к разъему диагностики автомобиля подсоединяют диагностический разъем и программно по кодам неисправностей, а также по изменениям сигналов с датчика, определяют его техническое состояние.

Недостатками способа являются дороговизна стенда, сложность локализации отдельных неисправностей.

Известен способ проверки прибором DST-2 (Автомобили ГАЗ с двигателем ЗМ3-4062.10 Руководство по техническому обслуживанию системы управления двигателем МИКАС 5.4 М. «Легион Автодата», 1999), заключающийся в том, что на автомобиле к ДМРВ подсоединяют разъем прибора DST-2. Заводят двигатель, создают диагностические режимы и по изменению параметров напряжения судят о массовом расходе воздуха, на основании чего оценивают техническое состояние ДМРВ.

Недостатками данного способа являются дороговизна прибора, невозможность локализации отдельных неисправностей, ограниченность проверки ДМРВ на разных режимах.

Принятый в качестве прототипа способ (Технические условия ДМРВ: ТУ 37.473.017-99) используют при проверке технического состояния ДМРВ. Способ заключается в контроле технического состояния ДМРВ на специальном стенде. Одновременно устанавливают эталонный и проверяемый ДМРВ, включают вентилятор, создают поток воздуха, который проходит через датчики последовательно. Меняют скорость потока при помощи дроссельной заслонки. Проверку электрических параметров датчика проводят при температуре (23±5) °С на стенде. Измеряют выходное напряжение датчика при контрольных значениях массового расхода воздуха, указанных в таблице. Датчик считается выдержавшим испытание, если его электрические параметры соответствуют техническим требованиям.

Способ имеет ряд недостатков: наличие только одного вольтметра не дает возможности достоверной и точной оценки технического состояния ДМРВ, причем точность проверки значительно зависит от температуры окружающей среды, а заданную температуру не всегда возможно обеспечить, в целом при использовании данного стенда оценка технического состояния ДМРВ требует больших затрат времени.

Целью изобретения является автоматизация процесса калибровки и сокращение продолжительности времени испытания датчиков массового расхода воздуха.

Эта цель достигается тем, что в предлагаемом способе калибровки датчиков массового расхода воздуха автомобилей, заключающемся в одновременной установке эталонного и проверяемого датчиков на стенде, подаче потока воздуха вентилятором через датчики последовательно, при этом сигналы с датчиков поступают в компьютер, осуществляют относительную оценку напряжений с эталонного и испытуемого датчиков, обеспечивая автоматическое изменение скорости и температуры воздушного потока, получают нормировочную функцию, которую записывают в память контроллера испытуемого датчика.

Способ калибровки ДМРВ осуществляется следующим образом. Вначале производится калибровка покупного ДМРВ, принимаемого в дальнейшем в качестве эталонного датчика. Для этого покупной расходомер воздуха, например, типа Bosch HFM5, устанавливается на стенд и с помощью приборов метрологического класса, например, термоанемометра ТТМ-2-02 и цифрового манометра атмосферного давления Keller LEX 1, производится калибровка, а именно определение зависимости выходного сигнала эталонного датчика от массового расхода воздуха. Расход и температура воздуха изменяются дискретно. При этом массовый расход воздуха (в кг/час) вычисляется по формуле:

G = ρ·S0·w·3600,

где: S0 – площадь живого сечения потока, м2;

w – средняя скорость потока, измеренная термоанемометром, м/с;

ρ – массовая плотность воздуха, кгс·с24.

При изменении давления и температуры изменяется плотность воздуха. Массовая плотность воздуха непосредственно не измеряется, а определяется по формуле:

ρ = 0,0473·В/Т,

где: В – барометрическое давление, измеренное манометром атмосферного давления, мм рт. ст.;

Т – температура воздуха, измеренная термоанемометром, К.

Значения зависимости выходного напряжения эталонного датчика от массового расхода и температуры воздуха записываются в память компьютера.

Затем производится калибровка проверяемого датчика по эталонному.

Для калибровки проверяемого ДМРВ на стенд устанавливаются оба датчика. Сигнал с проверяемого датчика снимается непосредственно с первичного преобразователя массового расхода. Как и в предыдущем случае, расход и температура воздуха изменяются дискретно. В каждой точке после окончания переходных процессов снимаются показания эталонного и испытуемого датчиков. Полученные значения записываются в память компьютера.

После прогона датчиков во всем диапазоне расхода воздуха и температуры составляются массивы данных эталонного и испытуемого ДМРВ и осуществляется обработка результатов измерений. Для каждого значения массового расхода воздуха вычисляется нормировочный коэффициент как отношение показаний испытуемого ДМРВ и эталонного ДМРВ. Полученная совокупность точек аппроксимируется полиномом, в результате чего получаем нормировочную функцию. Это дает возможность получать калиброванные показания испытуемого ДМРВ для любого произвольного значения расхода воздуха, а не только тех значений, которые были установлены в ходе испытаний. Нормировочная функция записывается в память микроконтроллера испытуемого датчика. Указанные действия выполняются для каждого значения температуры воздуха.

Таким образом, технический результат описанного способа заключается в сокращении продолжительности калибровки и испытаний проверяемых датчиков.

Способ калибровки датчиков массового расхода воздуха автомобилей, заключающийся в одновременной установке эталонного и проверяемого датчиков на стенде, подаче потока воздуха вентилятором через датчики последовательно, изменении скорости потока, отличающийся тем, что обеспечивается автоматическое изменение скорости и температуры воздушного потока, сигналы с датчиков поступают в компьютер, где осуществляется относительная оценка напряжений с выходов эталонного и испытуемого датчиков, получают нормировочную функцию, которую записывают в память контроллера испытуемого датчика.
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
22.06.2019
№219.017.8e6e

Способ количественного определения изопропанола, пропанола и трет-бутанола в пластовой воде

Изобретение относится к аналитической химии и может быть использовано в нефтяной и газовой промышленности для количественного определения пропанола, изопропанола и трет-бутанола в пластовых водах. Способ количественного определения изопропанола, пропанола и трет-бутанола в пластовой воде...
Тип: Изобретение
Номер охранного документа: 0002692105
Дата охранного документа: 21.06.2019
02.03.2020
№220.018.07e4

Управляемый генератор импульсов

Изобретение предназначено для использования в импульсной технике, в радиоэлектронных устройствах с регулируемой частотой импульсов, в системах автоматического регулирования, в электромузыкальных инструментах. Технический результат - расширение области применения генератора путем повышения...
Тип: Изобретение
Номер охранного документа: 0002715547
Дата охранного документа: 28.02.2020
16.05.2020
№220.018.1d3b

Способ преобразования энергии ветровых и энергетических потоков воздуха на средних высотах в тропосфере и устройство для его осуществления

Изобретение относится к области возобновляемых источников энергии и предназначено для использования в ветроэнергетике. Способ, реализуемый с помощью устройства, основан на оптимальном управлении углом атаки крыла каждого из привязных планеров с целью максимизации генерируемой электрической...
Тип: Изобретение
Номер охранного документа: 0002721014
Дата охранного документа: 15.05.2020
Показаны записи 11-13 из 13.
08.11.2019
№219.017.df21

Стенд для испытаний и калибровки датчиков массового расхода воздуха автомобилей

Изобретение относится к области эксплуатации машин и может быть использовано при испытаниях и калибровке датчиков массового расхода воздуха автомобилей, оборудованных микропроцессорной системой управления двигателем внутреннего сгорания. Стенд для испытаний и калибровки датчиков массового...
Тип: Изобретение
Номер охранного документа: 0002705324
Дата охранного документа: 06.11.2019
16.05.2020
№220.018.1d3b

Способ преобразования энергии ветровых и энергетических потоков воздуха на средних высотах в тропосфере и устройство для его осуществления

Изобретение относится к области возобновляемых источников энергии и предназначено для использования в ветроэнергетике. Способ, реализуемый с помощью устройства, основан на оптимальном управлении углом атаки крыла каждого из привязных планеров с целью максимизации генерируемой электрической...
Тип: Изобретение
Номер охранного документа: 0002721014
Дата охранного документа: 15.05.2020
21.06.2020
№220.018.294d

Способ изготовления гетероструктуры на основе массива наностержней оксида цинка с тонкой сплошной оболочкой из сульфида олова

Изобретение относится к оптоэлектронным приборам, в частности к нанотехнологии мультиспектральных фотодетекторов (МСФД), а также пленочных фотоэлектрических преобразователей (ФЭП) на основе гетерострур с p-n-переходом, содержащих массив наностержней оксида цинка n-типа проводимости...
Тип: Изобретение
Номер охранного документа: 0002723912
Дата охранного документа: 18.06.2020
+ добавить свой РИД