×
01.06.2019
219.017.7287

Результат интеллектуальной деятельности: Способ тепловых испытаний натурных керамических элементов летательных аппаратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры. Перед нанесением покрытия на нагреваемую поверхность устанавливают термоприемники, наносят покрытие с высокой степенью черноты и осуществляют их нагрев локально радиационными импульсами постоянной мощности, сравнивают время выхода на заданную температуру термоприемника с эталонным. При значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия. Технический результат - повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева. 2 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: Т.3. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с.). Способы испытаний натурных конструкций в таких установках требуют огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды для испытаний путем радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Известным по технической сущности является способ, включающий радиационный нагрев авиационных конструкций с помощью нагревателей, разделенных на несколько зон нагрева, и контроль в этих зонах температуры с помощью измерительных преобразователей (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.).

Разделение нагревателя на несколько зон нагрева обеспечивает необходимое распределение по координате температурного поля объекта испытания. Однако, такой вид радиационного нагрева имеет ряд ограничений. Основной недостаток такого способа - большая погрешность задания температурного поля на границах зон нагрева. Кроме того при радиационном нагреве необходимо выравнивать степень черноты всей поверхности изделия, которая обращена к нагревателям.

Наиболее близким по технической сущности является способ по патенту Российской Федерации №2451971 МПК G0523/19, публ. 27.05.2012. В этом способе технический результат достигается за счет задания тепловых режимов керамических обтекателей ракет при радиационном нагреве путем автоматического регулирования температуры по конечному числу точек и изменения оптических свойств на остальной части нагреваемой поверхности обтекателя за счет применения покрытия, состоящего из двух высокотемпературных компонентов, например из диоксида хрома и диоксида алюминия. Этот способ дает возможность повысить точность задания температурного поля на наружной поверхности при тепловых испытаниях. Однако при контактном измерении температуры с помощью термопар при задании режимов типа термоудара этот способ имеет существенный недостаток, выражающийся в зависимости точности измерения температуры от контакта спая термопары с нагреваемой поверхностью керамической оболочки.

Техническим результатом предполагаемого изобретения является повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева.

Этот технический результат достигается тем, что способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличается тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.

На фиг. 1 приведена схема нагрева стенки обтекателя при радиационном нагреве.

В действительности, тождественность теплового нагружения конструкции при разных способах нагрева (аэродинамический и радиационный) задается следующими выражениями (см. фиг. 1):

При х=0

где qr - плотность падающего теплового потока при радиационном нагреве; - температура фронтальной (нагреваемой) и тыльной (внутренней) поверхностей стенки обтекателя; Tg - температура газа во внутренней полости обтекателя; - степень черноты нагреваемой поверхности обтекателя; α1 - коэффициент теплопередачи; qc - плотность теплового потока при конвективном теплообмене.

Соблюдение равенства (1) во всех точках нагреваемой поверхности возможно при соблюдении единства измерения температуры во всех точках конструкции. При радиационном нагреве для этого должны соблюдаться следующие условия для спая термоприемника:

где ε - степень черноты над термоприемниками и нагреваемой поверхностью;

δ - толщина покрытия над термоприемниками;

ρ - термическое сопротивление между спаем термоприемника и нагреваемой поверхностью;

i - текущий номер термоприемника (i=1, 2, 3……n);

Si - площадь контакта нагреваемой поверхности со спаем термоприемника.

На фиг. 2 приведен разрез узла крепления термоприемника (термопары) путем приклеивания к нагреваемой поверхности, где испытуемое изделие обозначено цифрой 1, спай термоприемника цифрой 2, клей 3, 4 - покрытие для выравнивания степени черноты нагреваемой поверхности.

Для того, чтобы повысить точность измерения, в практике наземных тепловых испытаний применяются различные приемы: выравнивание степени черноты нагреваемой поверхности (εi), увеличение площади контакта (Si) за счет сплющивания спая термоприемника и др. Однако, добиться полного выполнения условий (3), таким путем невозможно.

Текущая температура спая термоприемника 2 при креплении к нагреваемой поверхности (фиг. 2) в зависимости от плотности падающего теплового потока qri, толщины покрытия δi со степенью черноты εi, плотности теплового потока qt(λ,c) (зависит от теплофизических свойств материала испытуемого изделия) и времени нагрева τ может быть выражена формулой:

где - коэффициент пропорциональности, зависящий от толщины покрытия термоприемника 4 со степенью черноты εi; Tw0 - начальная температура спая термоприемника; m - масса спая и электродов термоприемника под покрытием 4; с - удельная теплоемкость материала спая термоприемника; SH - площадь поверхности спая и электродов термоприемника (со стороны падающего теплового потока qri) под покрытием 4; Si - площадь соприкосновения спая и электродов термоприемника с нагреваемой поверхностью изделия 1.

Из формулы (4) вытекает, что при невыполнении условий (3) соблюдение равенства левой и правой частей (4) для всех термоприемников возможно только за счет изменения коэффициента пропорциональности , т.е. за счет изменения толщины покрытия 4 над спаем 2. На практике эту процедуру можно реализовать за счет нанесения на всю поверхность элемента ЛА съемного высокотемпературного покрытия с высокой степенью черноты εi и локальным нагревом каждого термоприемника радиационными импульсами постоянной плотности теплового потока qri до достижения заданного значения температуры Tw, причем качество крепления термоприемников проверяется сравнением времени выхода на заданную температуру τ на испытуемом элементе ЛА с временем достижения той же температуры для эталонного термоприемника τэ, если значение времени выхода для исследуемого термоприемника τ меньше чем для эталонного τэ, то на исследуемый термоприемник наносится дополнительный слой покрытия 4, если значение времени для исследуемого термоприемника τ больше, то снимается часть покрытия 4, причем данная процедура повторяется до равенства времени выхода на заданную температуру для исследуемого и эталонного термоприемников, после чего осуществляется переход к следующему исследуемому термоприемнику. Затем коррекция временных параметров термоприемников проводится для всех термоприемников, закрепленных на нагреваемой поверхности изделия. После чего осуществляется переход к тепловым испытаниям керамического элемента ЛА.

Экспериментальная отработка предлагаемого способа показала, что его внедрение позволит повысить точность задания температурного поля при наземных испытаниях керамических элементов летательных аппаратов.

Способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличающийся тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Источник поступления информации: Роспатент

Показаны записи 61-70 из 136.
10.05.2018
№218.016.4511

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «поверхность - поверхность». Обтекатель включает керамическую оболочку, соединенную с переходником эластичным адгезивом,...
Тип: Изобретение
Номер охранного документа: 0002650085
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.459f

Способ изготовления футеровки шаровых мельниц для получения водного шликера кварцевого стекла

Изобретение относится к керамической промышленности и может быть использовано при изготовлении футеровки для шаровых мельниц. Способ заключается в том, что приготавливают шликер кварцевого стекла с плотностью 1,86÷1,91 г/см, тониной с остатком на сите 63 мкм 4÷10%, формуют керамическую...
Тип: Изобретение
Номер охранного документа: 0002650308
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.47c4

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов. Обтекатель включает керамическую оболочку, внутренняя поверхность которой соединена слоем эластичного...
Тип: Изобретение
Номер охранного документа: 0002650723
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4857

Способ изготовления сотового заполнителя

Изобретение относится к способу изготовления сотового заполнителя из стеклоткани и может быть использовано в ракето-, самолето- и судостроении, строительной, мебельной и упаковочной промышленности при изготовлении трехслойных конструкций сложной кривизны. Способ включает нанесение клеевых полос...
Тип: Изобретение
Номер охранного документа: 0002651012
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4afc

Способ изготовления формообразующего пуансона

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров. Способ изготовления формообразующего пуансона включает нанесение слоя пластичного материала, например гипса, на металлический каркас, его обработку до заданного профиля и...
Тип: Изобретение
Номер охранного документа: 0002651731
Дата охранного документа: 23.04.2018
18.05.2018
№218.016.515f

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала, включающий определение толщины стенки, настроенной на рабочий частотный диапазон обтекателя, его изготовление и измерение радиотехнических характеристик на стенде, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002653185
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5557

Способ испытания на прочность обтекателей из хрупких материалов

Изобретение относится к испытательной технике и может быть использовано при проверке прочности оболочек антенных обтекателей из хрупких материалов, преимущественно керамических, при статических испытаниях. Сущность: осуществляют нагружение обтекателя контрольной нагрузкой в виде поперечной...
Тип: Изобретение
Номер охранного документа: 0002654320
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.57a3

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет класса "воздух-воздух" или "воздух-поверхность". Техническим результатом является повышение температурных и силовых эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002654953
Дата охранного документа: 23.05.2018
04.07.2018
№218.016.6a7b

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Антенный обтекатель содержит керамическую оболочку,...
Тип: Изобретение
Номер охранного документа: 0002659586
Дата охранного документа: 03.07.2018
14.07.2018
№218.016.713d

Способ удаления кремнийорганического герметика марки виксинт с поверхности перемешивающей фрезы

Изобретение относится к очистке деталей от герметика, в частности к способу очистки перемешивающих фрез от кремнийорганических герметиков холодного отверждения марки ВИКСИНТ. Cпособ удаления кремнийорганического герметика марки ВИКСИНТ с поверхности фрезы после перемешивания его компонентов,...
Тип: Изобретение
Номер охранного документа: 0002661216
Дата охранного документа: 13.07.2018
Показаны записи 61-70 из 157.
10.05.2018
№218.016.3f30

Способ формования заготовок из кварцевой керамики

Изобретение относится к производству керамических изделий из кварцевой керамики, типа кварцевых тиглей для металлургической промышленности. Предложен способ формования заготовок из кварцевой керамики, включающий приготовление водного шликера кварцевого стекла с плотностью 1,80÷1,91 г/см, его...
Тип: Изобретение
Номер охранного документа: 0002648749
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.40e2

Способ тепловых испытаний керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ тепловых испытаний керамических оболочек заключается в том, что керамическая оболочка монтируется...
Тип: Изобретение
Номер охранного документа: 0002649248
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4131

Способ тепловых испытаний металлических шпангоутов керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Предложен способ тепловых испытаний металлических шпангоутов керамических обтекателей, включающий нагрев...
Тип: Изобретение
Номер охранного документа: 0002649245
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4511

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «поверхность - поверхность». Обтекатель включает керамическую оболочку, соединенную с переходником эластичным адгезивом,...
Тип: Изобретение
Номер охранного документа: 0002650085
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.459f

Способ изготовления футеровки шаровых мельниц для получения водного шликера кварцевого стекла

Изобретение относится к керамической промышленности и может быть использовано при изготовлении футеровки для шаровых мельниц. Способ заключается в том, что приготавливают шликер кварцевого стекла с плотностью 1,86÷1,91 г/см, тониной с остатком на сите 63 мкм 4÷10%, формуют керамическую...
Тип: Изобретение
Номер охранного документа: 0002650308
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.47c4

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов. Обтекатель включает керамическую оболочку, внутренняя поверхность которой соединена слоем эластичного...
Тип: Изобретение
Номер охранного документа: 0002650723
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4afc

Способ изготовления формообразующего пуансона

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров. Способ изготовления формообразующего пуансона включает нанесение слоя пластичного материала, например гипса, на металлический каркас, его обработку до заданного профиля и...
Тип: Изобретение
Номер охранного документа: 0002651731
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.57a3

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей скоростных ракет класса "воздух-воздух" или "воздух-поверхность". Техническим результатом является повышение температурных и силовых эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002654953
Дата охранного документа: 23.05.2018
04.07.2018
№218.016.6a7b

Антенный обтекатель

Изобретение относится к области авиационно-ракетной техники, преимущественно к конструкциям носовых радиопрозрачных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Антенный обтекатель содержит керамическую оболочку,...
Тип: Изобретение
Номер охранного документа: 0002659586
Дата охранного документа: 03.07.2018
14.07.2018
№218.016.713d

Способ удаления кремнийорганического герметика марки виксинт с поверхности перемешивающей фрезы

Изобретение относится к очистке деталей от герметика, в частности к способу очистки перемешивающих фрез от кремнийорганических герметиков холодного отверждения марки ВИКСИНТ. Cпособ удаления кремнийорганического герметика марки ВИКСИНТ с поверхности фрезы после перемешивания его компонентов,...
Тип: Изобретение
Номер охранного документа: 0002661216
Дата охранного документа: 13.07.2018
+ добавить свой РИД