×
01.06.2019
219.017.7287

Результат интеллектуальной деятельности: Способ тепловых испытаний натурных керамических элементов летательных аппаратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры. Перед нанесением покрытия на нагреваемую поверхность устанавливают термоприемники, наносят покрытие с высокой степенью черноты и осуществляют их нагрев локально радиационными импульсами постоянной мощности, сравнивают время выхода на заданную температуру термоприемника с эталонным. При значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия. Технический результат - повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева. 2 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: Т.3. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с.). Способы испытаний натурных конструкций в таких установках требуют огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды для испытаний путем радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Известным по технической сущности является способ, включающий радиационный нагрев авиационных конструкций с помощью нагревателей, разделенных на несколько зон нагрева, и контроль в этих зонах температуры с помощью измерительных преобразователей (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.).

Разделение нагревателя на несколько зон нагрева обеспечивает необходимое распределение по координате температурного поля объекта испытания. Однако, такой вид радиационного нагрева имеет ряд ограничений. Основной недостаток такого способа - большая погрешность задания температурного поля на границах зон нагрева. Кроме того при радиационном нагреве необходимо выравнивать степень черноты всей поверхности изделия, которая обращена к нагревателям.

Наиболее близким по технической сущности является способ по патенту Российской Федерации №2451971 МПК G0523/19, публ. 27.05.2012. В этом способе технический результат достигается за счет задания тепловых режимов керамических обтекателей ракет при радиационном нагреве путем автоматического регулирования температуры по конечному числу точек и изменения оптических свойств на остальной части нагреваемой поверхности обтекателя за счет применения покрытия, состоящего из двух высокотемпературных компонентов, например из диоксида хрома и диоксида алюминия. Этот способ дает возможность повысить точность задания температурного поля на наружной поверхности при тепловых испытаниях. Однако при контактном измерении температуры с помощью термопар при задании режимов типа термоудара этот способ имеет существенный недостаток, выражающийся в зависимости точности измерения температуры от контакта спая термопары с нагреваемой поверхностью керамической оболочки.

Техническим результатом предполагаемого изобретения является повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева.

Этот технический результат достигается тем, что способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличается тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.

На фиг. 1 приведена схема нагрева стенки обтекателя при радиационном нагреве.

В действительности, тождественность теплового нагружения конструкции при разных способах нагрева (аэродинамический и радиационный) задается следующими выражениями (см. фиг. 1):

При х=0

где qr - плотность падающего теплового потока при радиационном нагреве; - температура фронтальной (нагреваемой) и тыльной (внутренней) поверхностей стенки обтекателя; Tg - температура газа во внутренней полости обтекателя; - степень черноты нагреваемой поверхности обтекателя; α1 - коэффициент теплопередачи; qc - плотность теплового потока при конвективном теплообмене.

Соблюдение равенства (1) во всех точках нагреваемой поверхности возможно при соблюдении единства измерения температуры во всех точках конструкции. При радиационном нагреве для этого должны соблюдаться следующие условия для спая термоприемника:

где ε - степень черноты над термоприемниками и нагреваемой поверхностью;

δ - толщина покрытия над термоприемниками;

ρ - термическое сопротивление между спаем термоприемника и нагреваемой поверхностью;

i - текущий номер термоприемника (i=1, 2, 3……n);

Si - площадь контакта нагреваемой поверхности со спаем термоприемника.

На фиг. 2 приведен разрез узла крепления термоприемника (термопары) путем приклеивания к нагреваемой поверхности, где испытуемое изделие обозначено цифрой 1, спай термоприемника цифрой 2, клей 3, 4 - покрытие для выравнивания степени черноты нагреваемой поверхности.

Для того, чтобы повысить точность измерения, в практике наземных тепловых испытаний применяются различные приемы: выравнивание степени черноты нагреваемой поверхности (εi), увеличение площади контакта (Si) за счет сплющивания спая термоприемника и др. Однако, добиться полного выполнения условий (3), таким путем невозможно.

Текущая температура спая термоприемника 2 при креплении к нагреваемой поверхности (фиг. 2) в зависимости от плотности падающего теплового потока qri, толщины покрытия δi со степенью черноты εi, плотности теплового потока qt(λ,c) (зависит от теплофизических свойств материала испытуемого изделия) и времени нагрева τ может быть выражена формулой:

где - коэффициент пропорциональности, зависящий от толщины покрытия термоприемника 4 со степенью черноты εi; Tw0 - начальная температура спая термоприемника; m - масса спая и электродов термоприемника под покрытием 4; с - удельная теплоемкость материала спая термоприемника; SH - площадь поверхности спая и электродов термоприемника (со стороны падающего теплового потока qri) под покрытием 4; Si - площадь соприкосновения спая и электродов термоприемника с нагреваемой поверхностью изделия 1.

Из формулы (4) вытекает, что при невыполнении условий (3) соблюдение равенства левой и правой частей (4) для всех термоприемников возможно только за счет изменения коэффициента пропорциональности , т.е. за счет изменения толщины покрытия 4 над спаем 2. На практике эту процедуру можно реализовать за счет нанесения на всю поверхность элемента ЛА съемного высокотемпературного покрытия с высокой степенью черноты εi и локальным нагревом каждого термоприемника радиационными импульсами постоянной плотности теплового потока qri до достижения заданного значения температуры Tw, причем качество крепления термоприемников проверяется сравнением времени выхода на заданную температуру τ на испытуемом элементе ЛА с временем достижения той же температуры для эталонного термоприемника τэ, если значение времени выхода для исследуемого термоприемника τ меньше чем для эталонного τэ, то на исследуемый термоприемник наносится дополнительный слой покрытия 4, если значение времени для исследуемого термоприемника τ больше, то снимается часть покрытия 4, причем данная процедура повторяется до равенства времени выхода на заданную температуру для исследуемого и эталонного термоприемников, после чего осуществляется переход к следующему исследуемому термоприемнику. Затем коррекция временных параметров термоприемников проводится для всех термоприемников, закрепленных на нагреваемой поверхности изделия. После чего осуществляется переход к тепловым испытаниям керамического элемента ЛА.

Экспериментальная отработка предлагаемого способа показала, что его внедрение позволит повысить точность задания температурного поля при наземных испытаниях керамических элементов летательных аппаратов.

Способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличающийся тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Источник поступления информации: Роспатент

Показаны записи 131-136 из 136.
24.04.2020
№220.018.187b

Способ ультразвуковой обработки изделий из стеклокерамики

Изобретение относится к области технологии изготовления стеклокерамических изделий и служит для снижения внутренних напряжений, возникающих в стеклокерамических изделиях в процессе их изготовления. Способ включает внешнее воздействие ультразвуковыми колебаниями. Ультразвуковые колебания...
Тип: Изобретение
Номер охранного документа: 0002719673
Дата охранного документа: 21.04.2020
22.05.2020
№220.018.1faa

Способ изготовления формообразующего пуансона

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров. Техническим результатом является повышение качества поверхности формообразующих пуансонов. Предложен способ изготовления формообразующего пуансона, включающий нанесение на...
Тип: Изобретение
Номер охранного документа: 0002721550
Дата охранного документа: 20.05.2020
30.05.2020
№220.018.224a

Способ вакуумноплотной пайки керамики с металлами и неметаллами

Изобретение относится к получению паяного соединения узла электровакуумного прибора, содержащего детали из керамики и металла, и может быть использовано в электронной, радиотехнической промышленности и прецизионном приборостроении. Между соединяемыми поверхностями деталей узла размещают припой,...
Тип: Изобретение
Номер охранного документа: 0002722294
Дата охранного документа: 28.05.2020
12.04.2023
№223.018.4384

Способ статических испытаний керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов, а именно к воспроизведению тепловых и силовых режимов головной части (обтекатель) ракеты в наземных условиях. Способ включает нагрев поверхности обтекателя и приложение к нему силовой нагрузки. В процессе...
Тип: Изобретение
Номер охранного документа: 0002793603
Дата охранного документа: 04.04.2023
10.05.2023
№223.018.5399

Способ определения диэлектрических свойств деструктирующих материалов при нагреве

Изобретение относится к технике определения диэлектрических свойств деструктирующих материалов на сверхвысоких частотах. Предложен способ определения диэлектрических свойств деструктирующих материалов при нагреве, который включает настройку резонатора без образца, состоящего из...
Тип: Изобретение
Номер охранного документа: 0002795249
Дата охранного документа: 02.05.2023
27.05.2023
№223.018.71d7

Способ изготовления гипсовых форм для литья керамических изделий

Изобретение относится к технологии производства гипсовых изделий и может быть использовано в керамической промышленности для изготовления пористых форм. Способ изготовления гипсовых форм для литья керамических изделий включает подготовку формового комплекта. Приготавливают гипсовый раствор...
Тип: Изобретение
Номер охранного документа: 0002796118
Дата охранного документа: 17.05.2023
Показаны записи 131-140 из 157.
06.03.2020
№220.018.09aa

Способ лазерной сварки вакуумно-плотных кольцевых, спиральных и прямолинейных швов металлических деталей и устройство для его осуществления

Изобретение относится к лазерной сварке, в том числе тонкостенных деталей, и может быть использовано для соединения высоковакуумных изделий, например деталей электровакуумных приборов из различных металлов и сплавов с предварительной разделкой кромок и без нее. В способе лазерной сварки...
Тип: Изобретение
Номер охранного документа: 0002715930
Дата охранного документа: 04.03.2020
09.03.2020
№220.018.0adb

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано преимущественно в конструкциях радиопрозрачных антенных обтекателей, являющихся укрытием от аэродинамического воздействия антенных устройств головок самонаведения (АУ ГСН). Сущность заявленного решения...
Тип: Изобретение
Номер охранного документа: 0002716174
Дата охранного документа: 06.03.2020
13.03.2020
№220.018.0b08

Широкодиапазонная рентгеновская трубка

Изобретение относится к источникам рентгеновского излучения для селективного получения рентгеновского излучения с различными длинами волн. Широкодиапазонная рентгеновская трубка содержит герметичный корпус с окном для вывода рабочего пучка рентгеновского излучения, катод, анод с мишенями,...
Тип: Изобретение
Номер охранного документа: 0002716275
Дата охранного документа: 11.03.2020
13.03.2020
№220.018.0b86

Высокоресурсная металлокерамическая рентгеновская трубка

Изобретение относится к области рентгеновской техники и может найти применение в рентгеновских аппаратах для промышленной дефектоскопии и исследовательских целей. Технический результат заключается в повышении ремонтопригодности, технического ресурса, упрощении конструкции. Высокоресурсная...
Тип: Изобретение
Номер охранного документа: 0002716261
Дата охранного документа: 11.03.2020
27.03.2020
№220.018.10da

Гетерогенный активный припой для пайки металлокерамических и керамических вакуумно-плотных соединений

Изобретение предназначено для получения паяных соединений деталей электровакуумного прибора, выполненных из керамики и металла. Гетерогенный активный припой состоит из фольги с нанесенным на нее активным металлом. Фольга выполнена из меди или из медно-серебряного сплава. Активный металл нанесен...
Тип: Изобретение
Номер охранного документа: 0002717766
Дата охранного документа: 25.03.2020
12.04.2020
№220.018.1433

Способ оценки устойчивости тонкостенных стеклопластиковых оболочек

Изобретение относится к методам определения механических характеристикоболочек вращения и может быть использовано для оценки их устойчивости, например, при производстве тонкостенных стеклопластиковых оболочек обтекателей летательных аппаратов. Способ оценки устойчивости тонкостенных...
Тип: Изобретение
Номер охранного документа: 0002718645
Дата охранного документа: 10.04.2020
17.04.2020
№220.018.1569

Литейный инварный сплав на основе железа

Изобретение относится к металлургии, а именно к литейному производству инварных сплавов с минимальным температурным коэффициентом линейного расширения (ТКЛР), и может быть использовано для изготовления деталей, работающих в контакте с материалом на основе кварца. Предложенный сплав содержит,...
Тип: Изобретение
Номер охранного документа: 0002718842
Дата охранного документа: 14.04.2020
24.04.2020
№220.018.187b

Способ ультразвуковой обработки изделий из стеклокерамики

Изобретение относится к области технологии изготовления стеклокерамических изделий и служит для снижения внутренних напряжений, возникающих в стеклокерамических изделиях в процессе их изготовления. Способ включает внешнее воздействие ультразвуковыми колебаниями. Ультразвуковые колебания...
Тип: Изобретение
Номер охранного документа: 0002719673
Дата охранного документа: 21.04.2020
14.05.2020
№220.018.1ca4

Способ управления нагревом при тепловых испытаниях керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть ракеты в наземных условиях. Заявлен способ управления нагревом при тепловых испытаниях керамических...
Тип: Изобретение
Номер охранного документа: 0002720738
Дата охранного документа: 13.05.2020
20.05.2020
№220.018.1e30

Способ изготовления изделий из эпоксидно-керамического материала

Изобретение относится к технологии изготовления крупногабаритных сердечников для формования керамических заготовок (либо модели для изготовления пористых форм) из эпоксидно-керамического материала. Способ включает нанесение на металлический каркас изделия внутреннего слоя эпоксидной смолы с...
Тип: Изобретение
Номер охранного документа: 0002721051
Дата охранного документа: 15.05.2020
+ добавить свой РИД