×
01.06.2019
219.017.7287

Результат интеллектуальной деятельности: Способ тепловых испытаний натурных керамических элементов летательных аппаратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры. Перед нанесением покрытия на нагреваемую поверхность устанавливают термоприемники, наносят покрытие с высокой степенью черноты и осуществляют их нагрев локально радиационными импульсами постоянной мощности, сравнивают время выхода на заданную температуру термоприемника с эталонным. При значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия. Технический результат - повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева. 2 ил.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: Т.3. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с.). Способы испытаний натурных конструкций в таких установках требуют огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды для испытаний путем радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Известным по технической сущности является способ, включающий радиационный нагрев авиационных конструкций с помощью нагревателей, разделенных на несколько зон нагрева, и контроль в этих зонах температуры с помощью измерительных преобразователей (Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.).

Разделение нагревателя на несколько зон нагрева обеспечивает необходимое распределение по координате температурного поля объекта испытания. Однако, такой вид радиационного нагрева имеет ряд ограничений. Основной недостаток такого способа - большая погрешность задания температурного поля на границах зон нагрева. Кроме того при радиационном нагреве необходимо выравнивать степень черноты всей поверхности изделия, которая обращена к нагревателям.

Наиболее близким по технической сущности является способ по патенту Российской Федерации №2451971 МПК G0523/19, публ. 27.05.2012. В этом способе технический результат достигается за счет задания тепловых режимов керамических обтекателей ракет при радиационном нагреве путем автоматического регулирования температуры по конечному числу точек и изменения оптических свойств на остальной части нагреваемой поверхности обтекателя за счет применения покрытия, состоящего из двух высокотемпературных компонентов, например из диоксида хрома и диоксида алюминия. Этот способ дает возможность повысить точность задания температурного поля на наружной поверхности при тепловых испытаниях. Однако при контактном измерении температуры с помощью термопар при задании режимов типа термоудара этот способ имеет существенный недостаток, выражающийся в зависимости точности измерения температуры от контакта спая термопары с нагреваемой поверхностью керамической оболочки.

Техническим результатом предполагаемого изобретения является повышение точности задания тепловых режимов керамических обтекателей при наземных испытаниях в установках радиационного нагрева.

Этот технический результат достигается тем, что способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличается тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.

На фиг. 1 приведена схема нагрева стенки обтекателя при радиационном нагреве.

В действительности, тождественность теплового нагружения конструкции при разных способах нагрева (аэродинамический и радиационный) задается следующими выражениями (см. фиг. 1):

При х=0

где qr - плотность падающего теплового потока при радиационном нагреве; - температура фронтальной (нагреваемой) и тыльной (внутренней) поверхностей стенки обтекателя; Tg - температура газа во внутренней полости обтекателя; - степень черноты нагреваемой поверхности обтекателя; α1 - коэффициент теплопередачи; qc - плотность теплового потока при конвективном теплообмене.

Соблюдение равенства (1) во всех точках нагреваемой поверхности возможно при соблюдении единства измерения температуры во всех точках конструкции. При радиационном нагреве для этого должны соблюдаться следующие условия для спая термоприемника:

где ε - степень черноты над термоприемниками и нагреваемой поверхностью;

δ - толщина покрытия над термоприемниками;

ρ - термическое сопротивление между спаем термоприемника и нагреваемой поверхностью;

i - текущий номер термоприемника (i=1, 2, 3……n);

Si - площадь контакта нагреваемой поверхности со спаем термоприемника.

На фиг. 2 приведен разрез узла крепления термоприемника (термопары) путем приклеивания к нагреваемой поверхности, где испытуемое изделие обозначено цифрой 1, спай термоприемника цифрой 2, клей 3, 4 - покрытие для выравнивания степени черноты нагреваемой поверхности.

Для того, чтобы повысить точность измерения, в практике наземных тепловых испытаний применяются различные приемы: выравнивание степени черноты нагреваемой поверхности (εi), увеличение площади контакта (Si) за счет сплющивания спая термоприемника и др. Однако, добиться полного выполнения условий (3), таким путем невозможно.

Текущая температура спая термоприемника 2 при креплении к нагреваемой поверхности (фиг. 2) в зависимости от плотности падающего теплового потока qri, толщины покрытия δi со степенью черноты εi, плотности теплового потока qt(λ,c) (зависит от теплофизических свойств материала испытуемого изделия) и времени нагрева τ может быть выражена формулой:

где - коэффициент пропорциональности, зависящий от толщины покрытия термоприемника 4 со степенью черноты εi; Tw0 - начальная температура спая термоприемника; m - масса спая и электродов термоприемника под покрытием 4; с - удельная теплоемкость материала спая термоприемника; SH - площадь поверхности спая и электродов термоприемника (со стороны падающего теплового потока qri) под покрытием 4; Si - площадь соприкосновения спая и электродов термоприемника с нагреваемой поверхностью изделия 1.

Из формулы (4) вытекает, что при невыполнении условий (3) соблюдение равенства левой и правой частей (4) для всех термоприемников возможно только за счет изменения коэффициента пропорциональности , т.е. за счет изменения толщины покрытия 4 над спаем 2. На практике эту процедуру можно реализовать за счет нанесения на всю поверхность элемента ЛА съемного высокотемпературного покрытия с высокой степенью черноты εi и локальным нагревом каждого термоприемника радиационными импульсами постоянной плотности теплового потока qri до достижения заданного значения температуры Tw, причем качество крепления термоприемников проверяется сравнением времени выхода на заданную температуру τ на испытуемом элементе ЛА с временем достижения той же температуры для эталонного термоприемника τэ, если значение времени выхода для исследуемого термоприемника τ меньше чем для эталонного τэ, то на исследуемый термоприемник наносится дополнительный слой покрытия 4, если значение времени для исследуемого термоприемника τ больше, то снимается часть покрытия 4, причем данная процедура повторяется до равенства времени выхода на заданную температуру для исследуемого и эталонного термоприемников, после чего осуществляется переход к следующему исследуемому термоприемнику. Затем коррекция временных параметров термоприемников проводится для всех термоприемников, закрепленных на нагреваемой поверхности изделия. После чего осуществляется переход к тепловым испытаниям керамического элемента ЛА.

Экспериментальная отработка предлагаемого способа показала, что его внедрение позволит повысить точность задания температурного поля при наземных испытаниях керамических элементов летательных аппаратов.

Способ тепловых испытаний натурных керамических элементов летательных аппаратов, включающий нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры, отличающийся тем, что перед нанесением покрытия на нагреваемой поверхности устанавливают термоприемники, наносят покрытие и осуществляют их нагрев локально радиационными импульсами постоянной мощности и сравнивают время выхода на заданную температуру термоприемника с эталонным, причем при значении времени выхода для термоприемника менее, чем для эталонного, на исследуемый термоприемник наносят дополнительный слой покрытия, при значении времени выхода для термоприемника более, чем для эталонного, с термоприемника снимают слой покрытия.
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Способ тепловых испытаний натурных керамических элементов летательных аппаратов
Источник поступления информации: Роспатент

Показаны записи 101-110 из 136.
10.08.2019
№219.017.bdad

Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей...
Тип: Изобретение
Номер охранного документа: 0002696934
Дата охранного документа: 07.08.2019
10.08.2019
№219.017.bdf6

Способ теплового нагружения обтекателей ракет

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов (ЛА), в частности керамических обтекателей ракет. Заявленный способ теплового нагружения обтекателей ракет из неметаллических материалов включает зонный радиационный нагрев обтекателя и измерение температуры....
Тип: Изобретение
Номер охранного документа: 0002696939
Дата охранного документа: 07.08.2019
16.08.2019
№219.017.c045

Способ испытания керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ испытания керамических оболочек включает монтаж оболочки на контрольном шпангоуте с нанесенным на...
Тип: Изобретение
Номер охранного документа: 0002697410
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c07f

Способ теплопрочностных испытаний керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Способ теплопрочностных испытаний керамических обтекателей включает...
Тип: Изобретение
Номер охранного документа: 0002697481
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c174

Антенный обтекатель (варианты)

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с радиопрозрачными оболочками для ракет класса «воздух-воздух» и «воздух-земля». Задачей изобретения является создание антенного обтекателя с многоконтурной поверхностью с...
Тип: Изобретение
Номер охранного документа: 0002697516
Дата охранного документа: 15.08.2019
23.08.2019
№219.017.c27b

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и предназначено для использования в конструкциях антенных обтекателей для низкоскоростных ракет класса «воздух-поверхность» или «поверхность-поверхность». Антенный обтекатель изготавливается из стеклопластика на основе кварцевой...
Тип: Изобретение
Номер охранного документа: 0002697890
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c27f

Способ контроля качества узла соединения керамического обтекателя

Изобретение относится к наземным испытаниям элементов летательных аппаратов и может быть использовано в процессе контроля клеевых соединений оболочек вращения. Сущность: осуществляют силовое нагружение вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность,...
Тип: Изобретение
Номер охранного документа: 0002697858
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2f6

Способ адаптивной механической обработки керамических изделий на специальных станках с чпу

Изобретение относится к области механической обработки изделий из различных материалов и может быть использовано при обработке изделий из керамики. Осуществляют адаптивную механическую обработку керамических изделий на станках с ЧПУ, которая включает установку заготовки на станке, измерение...
Тип: Изобретение
Номер охранного документа: 0002698008
Дата охранного документа: 21.08.2019
03.09.2019
№219.017.c6ce

Широкополосный антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «воздух-поверхность». Техническим результатом является обеспечение заданных радиотехнических характеристик в сверхширокополосном...
Тип: Изобретение
Номер охранного документа: 0002698956
Дата охранного документа: 02.09.2019
05.09.2019
№219.017.c74c

Способ пеленгации и широкополосный пеленгатор для его осуществления

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство. Технический результат - повышение точности угловой пеленгации в широкой полосе частот. Указанный результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002699079
Дата охранного документа: 03.09.2019
Показаны записи 101-110 из 157.
12.07.2019
№219.017.b318

Инфракрасный нагреватель

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на элементах летательных аппаратов в наземных условиях. Инфракрасный нагреватель, содержащий каркас, теплоизоляционный экран,...
Тип: Изобретение
Номер охранного документа: 0002694244
Дата охранного документа: 10.07.2019
10.08.2019
№219.017.bdad

Способ определения предела прочности керамики при осевом растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении хрупких материалов. Сущность: осуществляют растяжение образца путем приложения к нему статической растягивающей нагрузки, измерение разрушающей...
Тип: Изобретение
Номер охранного документа: 0002696934
Дата охранного документа: 07.08.2019
16.08.2019
№219.017.c045

Способ испытания керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ испытания керамических оболочек включает монтаж оболочки на контрольном шпангоуте с нанесенным на...
Тип: Изобретение
Номер охранного документа: 0002697410
Дата охранного документа: 14.08.2019
16.08.2019
№219.017.c07f

Способ теплопрочностных испытаний керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях. Способ теплопрочностных испытаний керамических обтекателей включает...
Тип: Изобретение
Номер охранного документа: 0002697481
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c174

Антенный обтекатель (варианты)

Изобретение относится к области авиационной и ракетной техники, преимущественно к конструкциям антенных обтекателей с радиопрозрачными оболочками для ракет класса «воздух-воздух» и «воздух-земля». Задачей изобретения является создание антенного обтекателя с многоконтурной поверхностью с...
Тип: Изобретение
Номер охранного документа: 0002697516
Дата охранного документа: 15.08.2019
23.08.2019
№219.017.c27b

Антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и предназначено для использования в конструкциях антенных обтекателей для низкоскоростных ракет класса «воздух-поверхность» или «поверхность-поверхность». Антенный обтекатель изготавливается из стеклопластика на основе кварцевой...
Тип: Изобретение
Номер охранного документа: 0002697890
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c27f

Способ контроля качества узла соединения керамического обтекателя

Изобретение относится к наземным испытаниям элементов летательных аппаратов и может быть использовано в процессе контроля клеевых соединений оболочек вращения. Сущность: осуществляют силовое нагружение вдоль оси симметрии обтекателя через пуансон с упругой прокладкой, наружная поверхность,...
Тип: Изобретение
Номер охранного документа: 0002697858
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2f6

Способ адаптивной механической обработки керамических изделий на специальных станках с чпу

Изобретение относится к области механической обработки изделий из различных материалов и может быть использовано при обработке изделий из керамики. Осуществляют адаптивную механическую обработку керамических изделий на станках с ЧПУ, которая включает установку заготовки на станке, измерение...
Тип: Изобретение
Номер охранного документа: 0002698008
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c338

Способ механической обработки крупногабаритных сложнопрофильных керамических изделий

Изобретение относится к области абразивной обработки и может быть использовано при механической обработке крупногабаритных сложнопрофильных керамических изделий. Используют оправку с узлами фиксации, которую устанавливают на токарном станке. На узлы фиксации оправки наносят поверхностный слой...
Тип: Изобретение
Номер охранного документа: 0002698009
Дата охранного документа: 21.08.2019
03.09.2019
№219.017.c6ce

Широкополосный антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «воздух-поверхность». Техническим результатом является обеспечение заданных радиотехнических характеристик в сверхширокополосном...
Тип: Изобретение
Номер охранного документа: 0002698956
Дата охранного документа: 02.09.2019
+ добавить свой РИД