Вид РИД
Изобретение
Изобретение относится к полимерным композиционным материалам с особыми свойствами.
Полимерные композиционные материалы широко используются в различных областях машиностроения, медицине и т.п. в качестве конструкционных материалов (Композиционные материалы: Справочник под ред. В.В. Васильева - М., Машиностроение, 1990 г.). Расширить возможности применения композиционных материалов удастся, если им придать особые свойства за счет, например, армирования элементами из функциональных материалов. Такими материалами могут служить сплавы с эффектом памяти формы и сверхупругостью.
В Патенте РФ №2477627, принятым за прототип, предложен полимерный композиционный материал, в котором армирующие элементы из сплава с термомеханической памятью выполнены в виде волокон длиной не менее чем в 3 раза превышающей расстояние между ними и имеющими температуру восстановления формы, соответствующую температуре эксплуатации композиционного материала.
Однако полимерные материалы, являющиеся матрицей такого композиционного материала, могут иметь сильно отличающиеся физико-механические свойства, в частности, модуль упругости. Чрезмерная жесткость матрицы из полимера с высоким модулем упругости будет препятствовать реализации эффекта памяти формы, несмотря на соблюдение условий, определенных в указанном патенте.
Задачей предложенного технического решения является разработка композиционного материала, наиболее полно проявляющего эффект памяти формы.
Технический результат заключается в повышении величины восстанавливаемой при нагреве деформации композиционного материала.
Поставленная задача решается за счет того, что композиционный материал с эффектом памяти формы включает полимерную матрицу, армированную элементами из сплавов с эффектом памяти формы, причем объемная доля армирующих элементов удовлетворяет следующему соотношению:
VA>ЕМ/(ЕМ+ЕА)
где VA - объемная доля армирующих элементов,
ЕМ - модуль упругости полимерной матрицы,
ЕА - «эффективный» модуль упругости армирующих элементов их сплавов с эффектом памяти формы.
Армирующие элементы представляют собой волокна, пластины или их сочетание.
Матрица может представлять собой композиционный материал на основе полимера, армированного элементами из различных материалов, например, углепластики, стеклопластики и т.п.
Способ реализации эффекта памяти формы в композиционном материале может включать деформацию его при температуре ниже МК и нагрев до температуры выше АК (Сплавы с эффектом памяти формы / Под ред. Фунакубо X. - М.: Металлургия. 1990 г.), причем при деформации материал выдерживают под нагрузкой не менее 30 минут.
Способ реализации эффекта памяти формы в композиционном материале может включать его деформацию при температуре ниже МК и нагрев до температуры выше АК, причем деформацию проводят со скоростью не более 0,3% в минуту.
Технический результат достигается путем регламентации объемной доли армирующих элементов в композиционном материале в зависимости от соотношения модулей упругости армирующего материала и материала матрицы. Причем, в качестве модуля упругости армирующего материала из сплавов с эффектом памяти формы рассматривается «эффективный» модуль упругости, который характеризует механическое поведение материала при нагружении до критических напряжений при реализации эффекта памяти формы (Коллеров М.Ю. и др. Титан, 2012 г., №2).
При реализации эффекта памяти формы, армирующие элементы изменяют свою форму (деформируются) на достаточно большую величину (до 8%). Окружающая их матрица будет подвергаться деформации со стороны восстанавливающих форму армирующих волокон. В первом приближении, при нагружении равенство деформаций в композиционном материале армирующих элементов и матрицы будет наблюдаться при тождестве их жесткостей, которые можно выразить в виде соотношения:
В этом случае можно ожидать, что композиционный материал будет восстанавливать не более половины от деформации армирующих элементов из сплавов с эффектом памяти формы (до 4%). Если объемная доля армирующих элементов меньше, чем следует из соотношения (1), то величина восстанавливаемой деформации снижается в значительно большей степени. Таким образом, для того, чтобы композиционный материал мог восстанавливать при нагреве не менее половины деформации, объемная доля армирующих элементов из сплавов с эффектом памяти формы должна удовлетворять неравенству:
где VA - объемная доля армирующих элементов из сплавов с памятью формы,
ЕА - «эффективный» модуль упругости сплава с памятью формы,
ЕМ - модуль упругости материала матрицы.
Из неравенства (2) следует, что объемная доля армирующих элементов из сплава с памятью формы зависит от модуля упругости материала матрицы. В случае использования в качестве матрицы материалов с малым модулем упругости, например, эластомеров типа силиконовой резины, объемная доля армирующих элементов может быть невелика, а при применении термопластов типа полиамид 66 или реактопластов типа эпоксидной смолы, она должна быть значительно повышена.
В качестве матрицы композиционного материала могут быть использованы полимеры, армированные органическими или неорганическими материалами для повышения ее механических или служебных свойств, например, углепласты, стеклопласты и т.п. При этом сохраняется необходимость выполнения неравенства (2).
Армирующие элементы из сплавов с памятью формы могут быть использованы в виде волокон (волокнистые композиционные материалы) или пластин (слоистые композиционные материалы).
Особенностью механического поведения полимерных материалов и композиционных материалов на их основе является упруго-вязкое поведение, которое, в частности, проявляется во временной зависимости напряжений в полимере и их релаксации. Эту особенность необходимо учитывать при реализации эффекта памяти формы в композиционном материале, армированном элементами из сплавов с памятью формы.
Так, деформацию композиционного материала при температуре ниже МК сплава с памятью формы, необходимо проводить либо со скоростью 0,3% в минуту, либо выдерживать в нагруженном состоянии не менее 30 минут. В этом случае удается зафиксировать максимальную остаточную деформацию композиционного материала, которая будет восстанавливаться при нагреве выше АК сплава с памятью формы.
Примеры:
Были изготовлены образцы композиционного материала, в которых в качестве матрицы использовались полиамид 66, сэвилен и стеклопластик с эпоксидной матрицей. Модули упругости этих материалов составляли, соответственно 1,5; 0,4; 30 ГПа. В качестве армирующих элементов применяли волокна в виде проволоки диаметром 1,3 мм и в виде пластин толщиной 2,2 и 1,5 мм из сплава ТН1 (температуры МК = 28°С, АК = 50°С). Эффективный модуль упругости сплава ТН1 равен 5 ГПа. В соответствии с неравенством (2) объемная доля армирующих элементов из сплава с эффектом памяти формы должна быть не менее 0,23 для полиамида 66, 0,09 для сэвилена и 0,8 для стеклопластика. Образцы композиционного материала размером ≈ 5×20×150 мм получали прессованием при температуре 180-260°С. Волокна в полиамиде 66 и сэвилене располагались по средней плоскости образца на равных расстояниях друг от друга. Объемную долю армирующих элементов меняли количеством волокон в композиционном материале. Пластины из сплава ТН1 в слоистом композиционном материале располагали по поверхностям образца, стеклопластик - между ними.
Образцы при комнатной температуре (ниже МК) деформировали изгибом на 10% со скоростями 10; 0,3; 0,1% в минуту. Часть образцов после деформации со скоростью 10% в минуту выдерживали под нагрузкой в течении 15, 30 и 60 минут, после чего измеряли остаточную деформацию и подвергали нагреву до температуры 60°С (выше АК). После нагрева замеряли остаточную деформацию, которую вычитали из остаточной деформации, зафиксированной при комнатной температуре. Эта разность соответствовала восстановленной при нагреве деформации. Результаты экспериментов приведены в Таблице.
Анализ приведенных результатов показал, что у образцов, для которых выполняется неравенство (2) при скоростях деформации не более 0,3% в минуту или при выдержке в нагруженном состоянии не менее 30 минут, в композиционном материале при комнатной температуре удается зафиксировать значительную остаточную деформацию (см. опыты 1-7), которая при последующем нагреве практически полностью восстанавливается.
Аналогичные результаты наблюдались при использовании армирующих материалов из других сплавов на основе Al, Cu и других.
Таким образом, задачу изобретения можно считать выполненной.