×
29.05.2019
219.017.690d

СПОСОБ ПОЛУЧЕНИЯ СУСПЕНЗИЙ НАНОЧАСТИЦ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области химической промышленности и металлургии и может применяться для получения суспензий наноразмерных частиц элементов и их соединений. Способ включает конденсацию из газовой фазы при охлаждении водой высокотемпературного потока, содержащего пары конденсируемого продукта, при этом плазменный высокотемпературный поток поступает в реакционную камеру для образования паров конденсируемого продукта, а затем истекает в объем воды со скоростью не менее 100 м/с через канал, расположенный на глубине не менее 50 диаметров канала, при этом температура воды в объеме поддерживается ниже температуры ее кипения. Технический результат - получение суспензии неагрегированных частиц.
Реферат Свернуть Развернуть

Изобретение относится к химической, фармацевтической промышленности, металлургии и может применяться для получения суспензий наноразмерных частиц элементов и их соединений.

Быстрое снижение температуры высокотемпературных газовых систем, содержащих пары конденсируемых компонентов - закалка, широко используется в процессах получения наночастиц с размерами менее 100 нм, в частности при осуществлении процессов в потоках термической плазмы. Затвердевание наночастиц при быстром охлаждении предотвращает их рост в результате слияния наночастиц при их столкновениях, обеспечивая возможности получения частиц с предельно малым размером и управления размером наночастиц в процессе получения. Закалка позволяет значительно уменьшить или полностью прекратить протекание химического взаимодействия частиц с газовой средой, приводящего к внесению примесей в конечный продукт.

В плазменных процессах получения газообразных и конденсированных продуктов используются различные способы закалки высокотемпературных потоков [Сурис А.Л. Плазмохимические процессы и аппараты, М.: Химия, 1989, с.212-230]:

1. Закалка в рекуперативных и регенеративных теплообменниках,

2. Закалка вдувом струй холодного газа,

3. Закалка вводом диспергированной в форсунке жидкостью,

4. Закалка вводом твердых дисперсных частиц,

5. Закалка в кипящем слое твердых частиц,

6. Газодинамическая закалка при расширении потока в сопле Лаваля.

Закалка при взаимодействии газодисперсного плазменного потока с охлаждаемой поверхностью используется при получении порошков с аморфной структурой [Патент США 4781754]. Основными недостатками такого способа закалки являются снижение скорости закалки при увеличении толщины слоя осажденного на поверхность порошка и возможное спекание частиц с образованием устойчивых агрегатов.

Закалка вдувом струй холодного газа в высокотемпературный поток является одним из наиболее широко используемых способов закалки в плазменных процессах, в том числе процессах получения нанопорошков [Патенты США 6777639, 7126081, 7494527, 7501599]. К недостаткам этого способа относится повышенный расход газов, снижение концентрации целевого продукта, необходимость использования фильтров с большой поверхностью фильтрации для выделения получаемых в процессе наночастиц.

Закалка вводом диспергированной жидкостью обеспечивает фиксацию продуктов, полученных при высоких температурах в потоке плазмы [Патент КНР 101550057]. Как и в предыдущем случае, данный способ закалки приводит к снижению концентрации целевого продукта. Кроме того, в случае получения конечного продукта в виде порошка при выделении порошка на фильтре для предотвращения конденсации закалочной жидкости фильтрацию необходимо проводить при повышенных температурах.

Закалка высокотемпературного газа при взаимодействии с твердыми частицами в потоке или в движущемся слое частиц [Патент США 4705908] может приводить к разрушению частиц и необходимости их постоянной или периодической регенерации.

Газодинамическая закалка при расширении высокотемпературного потока в устройствах типа сопла Лаваля не приводит к разбавлению получаемых продуктов закалочным газом, однако при получении дисперсных продуктов может происходить осаждение частиц на поверхности сопла, приводящее к потере его работоспособности.

Известен метод получения металлических порошков распылением потока металлического расплава струями воды [Либенсон Г.А. Процессы порошковой металлургии, Том 1, М.: МИСИС, 2001, с.91-92], но данный метод не позволяет получать наноразмерные металлические частицы.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ [Патент США 5851507] непрерывного получения нанопорошков, включающий испарение различных прекурсоров в высокотемпературном потоке, обеспечение начала конденсации целевого продукта из газовой фазы, последующую закалку в сужающемся-расширяющемся сопле со скоростью более 106 К/с для подавления роста частиц и получения целевого нанопорошка с узким распределением частиц по размерам. Выделение наночастиц из несущего газового потока производится фильтрацией. Указанным способом могут быть получены нанопорошки элементов и их различных соединений (оксидов, карбидов, нитридов, интерметаллидов и др.).

К принципиальным недостаткам способа относится следующее.

1. При течении потока, содержащего наночастицы, на его поверхности сопла возможно образование отложений, приводящих к нарушению его режима работы. Использование газовой защиты стенок сопла, препятствующей осаждению наночастиц, приводит к дополнительному расходу газов.

2. При торможении газового потока с наночастицами после прохождения сопла кинетическая энергия потока будет переходить в тепловую, температура потока будет повышаться, что приведет к коагуляционному росту частиц. Для предотвращения этого эффекта необходимо использовать дополнительную аппаратуру для обеспечения отвода тепла.

3. Для разгона газа в сопле необходимо создание избыточного давления на входе в сопло или вакуума на выходе, что связано с дополнительными затратами энергии и использованием вспомогательного оборудования.

4. Выделение наночастиц из газодисперсного потока фильтрацией через проницаемый материал неизбежно приводит к образованию агломератов наночастиц.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа получения суспензии наноразмерных частиц элементов и их соединений. Решение этой задачи предусматривает осуществление закалки при получении нанопорошков за счет высокоскоростного истечения высокотемпературного газового или газодисперсного потока в объем жидкости.

Техническим результатом изобретения является получение суспензий, содержащих неагрегированные наночастицы. Технический результат достигается тем, что высокотемпературный поток поступает в реакционную камеру для образования паров конденсируемого продукта, а затем истекает в объем воды со скоростью не менее 100 м/с через канал, расположенный на глубине не менее 50 диаметров канала, при этом температура воды в объеме поддерживается ниже температуры ее кипения.

Высокоскоростное (дозвуковое) истечение газовой струи в жидкость приводит к очень быстрому распаду газового потока на мелкие пузыри, что обеспечивает высокие скорости тепломассопереноса в системе газ-жидкость, в частности высокую скорость охлаждения газа [Yasuhisa Ozawa, Kazumi Mori, Characteristics of Jetting into Liquid, Transactions ISIJ, Vol.23, 1983 (764-768); Alekseev N.V., Samokhin A.V., Belivtsev A.N., Zhavoronkova V.I. Thermal-Plasma Jet Oxidation of Phenol in Aqueous Solutions, High Energy Chemistry, Vol.34, N.6, 2000 (389-393)].

Высокотемпературный поток, содержащий пары конденсируемого продукта, истекает в объем жидкости со скоростью 100 м/с или выше. В результате распада высокотемпературного высокоскоростного потока в объеме жидкости на мелкие пузыри происходит быстрое охлаждение газа - закалка. Если первоначальный высокотемпературный поток имел температуру выше конденсации материала наночастиц, то распад газового потока сопровождается конденсацией паров и образованием наночастиц. Присутствующие в объеме газовых пузырей наночастицы переносятся на межфазную поверхность газ-жидкость и далее распределяются в объеме жидкости. Размещение канала, через который истекает высокотемпературный поток, на глубине не менее 50 диаметров канала исключает «пробой» газовой струей слоя жидкости и обеспечивает полное охлаждение газового потока и перенос образовавшихся наночастиц в объем жидкости.

Для предотвращения кипения жидкости при тепловом воздействии высокотемпературной струи используемый объем жидкости имеет систему охлаждения, позволяющую поддерживать заданную температуру. В качестве закаливающей жидкости используется вода, позволяющая получать оксидные наночастицы, а также наночастицы элементов, устойчивых к окислению, например серебра, золота и др.

Перенос наночастиц в объем воды препятствует их агрегированию, причем для максимального подавления агрегирования наночастиц жидкость может содержать поверхностно-активные вещества, выбор которых определяется конкретно получаемым продуктом.

Отличительными особенностями и преимуществами процесса является:

- осуществление закалки высокотемпературного потока, содержащего пары целевого продукта, при истечении этого потока со скоростью не менее 100 м/с в объем воды через канал, расположенный на глубине не менее 50 диаметров канала,

- обеспечение теплосъема от воды для поддержания заданной температуры в ее объеме и предотвращения кипения,

- осуществление закалки при истечении высокотемпературной струи в объем воды обеспечивает сверхвысокие скорости охлаждения, что предотвращает коагуляционный рост наночастиц и обеспечивает получение целевых нанопорошков с предельно малым размером частиц,

- перенос получаемых наночастиц в жидкость предотвращает их агрегирование и агломерирование, которые характерны при выделении наночастиц их газовых потоков осаждением на непроницаемую или проницаемую (фильтрующую) поверхность.

Предлагаемый процесс реализуется следующим образом.

В поток высокотемпературного газа, полученный в электродуговом, высокочастотном, сверхвысокочастотном плазмотроне или другом нагревателе газов, в том числе горелочных устройствах, вводятся реагенты в твердом, жидком или газообразном состоянии. Высокотемпературный поток должен иметь температуру, обеспечивающую испарение частиц твердых или жидких реагентов. Далее высокотемпературный поток поступает в реакционную камеру, где происходят фазовые и химические превращения, приводящие к образованию паров целевого продукта. На выходе из реакционной камеры в высокотемпературном потоке содержатся пары конденсируемого продукта. Для предотвращения образования твердых отложений на стенках камеры могут использоваться различные приемы, например поддержание рабочей температуры стенки выше температуры конденсации продуктов, организация газовой защиты стенки и др. На выходе из реакционной камеры обеспечивается скорость высокотемпературного потока до значения выше 100 м/с за счет уменьшения площади поперечного сечения реакционной камеры.

Из реакционной камеры высокоскоростной высокотемпературный поток направляется в объем жидкости, при этом истечение газа осуществляется через канал, расположенный ниже уровня невозмущенной жидкости на глубине не менее 50 диаметров канала. Канал истечения газа располагается в днище или боковой стенке емкости с жидкостью. Это условие расположения канала необходимо для обеспечения высокой скорости закалки, полного охлаждения высокотемпературного газового потока и полного захвата наночастиц жидкой средой. Для предотвращения кипения жидкости за счет нагрева при взаимодействии с высокотемпературным газом осуществляется охлаждение жидкости с использованием теплосъемных устройств (охлаждение стенок резервуара, в котором находится жидкость, размещение охлаждаемых элементов в объеме жидкости). Жидкостью, в которой происходит закалка высокотемпературного газового потока, является вода. В воде могут присутствовать поверхностно-активные соединения, препятствующие коагуляции присутствующих в ней наночастиц.

Процесс может осуществляться периодически до достижения определенной концентрации наночастиц в воде или непрерывно при протоке воды через емкость, в которую истекает высокотемпературный поток.

Реализация способа представлена следующими примерами.

Пример 1

В плазменную струю азота, полученную в электродуговом плазмотроне и имеющую среднемассовую температуру 4800 К, транспортирующим азотом вводится порошок серебра с размером частиц <40 мкм. Расход плазмообразующего азота составляет 1.3 нм3/ч, расход транспортирующего азота - 0.2 нм3/ч, расход порошка серебра - 4 г/мин. Полученный после испарения металла в реакционной камере высокотемпературный поток истекает со скоростью 240 м/с через канал диаметром 3 мм в цилиндрическую емкость, заполненную водой и имеющую водяное охлаждение стенок. Истечение осуществляется через днище емкости по ее оси. Высота слоя залитой в емкость жидкости составляет 260 мм. Температура воды составляет 55°С.

В полученной водной суспензии присутствуют наночастицы серебра со средним размером частиц 35 нм.

Пример 2

В плазменную струю воздуха, полученную в электродуговом плазмотроне и имеющую среднемассовую температуру 3800 К, транспортирующим воздухом вводится порошок алюминия с размером частиц <30 мкм. Расход плазмообразующего азота составляет 1.2 нм3/ч, расход транспортирующего азота - 0.2 нм3/ч, расход порошка алюминия - 3 г/мин. Полученный после испарения металла в реакционной камере и образования паров оксида алюминия в результате взаимодействия паров алюминия с кислородом воздуха высокотемпературный поток истекает со скоростью 160 м/с через канал диаметром 3.5 мм в цилиндрическую емкость, заполненную водной средой с рН 4.3 и имеющую водяное охлаждение стенок. Истечение осуществляется через днище емкости по ее оси. Высота слоя залитой в емкость жидкости составляет 300 мм, температура воды равна 50°С.

В полученной водной суспензии присутствуют наночастицы оксида алюминия со средним размером частиц 15 нм.

Способ получения суспензии наночастиц в результате конденсации из газовой фазы при охлаждении водой высокотемпературного потока, содержащего пары конденсируемого продукта, отличающийся тем, что плазменный высокотемпературный поток поступает в реакционную камеру для образования паров конденсируемого продукта, а затем истекает в объем воды со скоростью не менее 100 м/с через канал, расположенный на глубине не менее 50 диаметров канала, при этом температура воды в объеме поддерживается ниже температуры ее кипения.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 67.
10.01.2013
№216.012.18bf

Эластомерная композиция на основе сополимера тетрафторэтилена и перфторалкилвиниловых эфиров

Изобретение имеет отношение к эластомерной композиции. Эластомерная композиция, выполненная на основе тройного или четверного сополимера тетрафторэтилена и перфторалкилвиниловых эфиров, содержащих цианогруппу, включает в качестве вулканизующего агента перфтордиимидоиламидин. Композиция...
Тип: Изобретение
Номер охранного документа: 0002471827
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1cc0

Способ отбора кислотоустойчивых штаммов lactobacillus helveticus

Изобретение относится к биотехнологии. Проводят предварительный отбор мутантов Lactobacillus helveticus, устойчивых к низину А в концентрации от 25 до 100 мкг/мл после культивирования их на среде MRS-бульон и MRS - агар с низином А. Отобранные низинустойчивые мутанты повторно культивируют в...
Тип: Изобретение
Номер охранного документа: 0002472854
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1daa

Способ оценки эффективности терапии у больных хроническим гломерулонефритом

Изобретение относится к медицине, а именно к урологии и молекулярной диагностике, и касается способа оценки эффективности терапии циклофосфамидом у больных хроническим гломерулонефритом. Отбирают венозную кровь, выделяют ДНК и выявляют носительство аллелей локуса +1931 А/Т MIP-1β. В случае...
Тип: Изобретение
Номер охранного документа: 0002473088
Дата охранного документа: 20.01.2013
20.02.2013
№216.012.26b5

Способ спуска отделяющейся части ступени ракеты космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано для программного смещения координат точек падения отделяющихся частей (ОЧ) ступеней ракет космического назначения. Программу управления работой газовых ракетных двигателей и движением ОЧ ступеней ракет космического...
Тип: Изобретение
Номер охранного документа: 0002475429
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.27eb

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Изобретения относятся к физическому моделированию, в земных или натурных условиях, процессов в топливных баках отделяющихся ступеней ракет-носителей в условиях малой гравитации. Способ основан на введении в поток теплоносителя (ТН) микрочастиц пористых керамических элементов. Моделирование...
Тип: Изобретение
Номер охранного документа: 0002475739
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2b3e

Способ идентификации элементов, обладающих способностью терминировать транскрипты

Изобретение относится к области биотехнологии. Изобретение раскрывает способ идентификации элементов, обладающих способностью терминировать транскрипты. Для идентификации терминирующих последовательностей используют репортерную систему, предназначенную для транзиентной трансфекции в культуру...
Тип: Изобретение
Номер охранного документа: 0002476597
Дата охранного документа: 27.02.2013
27.02.2013
№216.012.2c59

Способ диагностики гестоза тяжелой степени

Изобретение относится к медицине, а именно к акушерству, и может быть использовано для диагностики гестоза тяжелой степени на поздних сроках беременности. Для этого проводят биохимическое исследование крови беременной в третьем триместре для определения концентрации гормонов лептина и грелина в...
Тип: Изобретение
Номер охранного документа: 0002476880
Дата охранного документа: 27.02.2013
20.04.2013
№216.012.35be

Селективный противотуберкулезный агент, представляющий собой 3-гидразоно-6-(3,5-диметилпиразол-1-ил)- 1,2,4,5-тетразин и способ его получения

Изобретение относится к селективному противотуберкулезному агенту, представляющему собой 3-гидразоно-6-(3,5-диметилпиразол-1-ил)-1,2,4,5-тетразин общей формулы А где R=атом водорода или метил; R=метил, арил, выбранный из возможно замещенного фенила, гетерил, выбранный из фурила, пиридила,...
Тип: Изобретение
Номер охранного документа: 0002479311
Дата охранного документа: 20.04.2013
27.04.2013
№216.012.3a57

Эластомерная композиция на основе сополимера тетрафторэтилена и перфторалкилвиниловых эфиров

Изобретение может быть использовано в различных отраслях промышленности, где требуются высокие термоагрессивостойкие свойства. Эластомерная композиция для уплотнительных материалов на основе сополимера тетрафторэтилена и перфторметилвинилового эфира и перфторалкилвиниловых эфиров, содержащих...
Тип: Изобретение
Номер охранного документа: 0002480496
Дата охранного документа: 27.04.2013
10.06.2013
№216.012.4845

Способ получения фторангидрида дифтор(фторсульфат)уксусной кислоты

Изобретение относится к способу получения фторангидрида дифтор(фторсульфат)уксусной кислоты при нагревании перфтораллилфторсульфата в реакторе до температуры 175-220°С, подаче в реактор кислорода в количестве, превышающем расчетное для окисления двойной связи перфтораллилфторсульфата в 2-5 раз,...
Тип: Изобретение
Номер охранного документа: 0002484081
Дата охранного документа: 10.06.2013
Показаны записи 1-10 из 18.
10.04.2013
№216.012.338b

Способ получения магнитоактивных покрытий на титане и его сплавах

Изобретение относится к области получения тонких пленок магнитных материалов, в частности магнитоактивных оксидных покрытий на титане и его сплавах, и может найти применение при изготовлении электромагнитных экранов и поглотителей электромагнитного и высокочастотного излучения для различной...
Тип: Изобретение
Номер охранного документа: 0002478738
Дата охранного документа: 10.04.2013
20.11.2014
№216.013.0923

Способ реактивного ионного травления слоя нитрида титана селективно к двуокиси кремния, поликремнию и вольфраму

Изобретение относится к микроэлектронике, методам и технологическим приемам контроля и анализа структуры интегральных схем, к процессам сухого плазменного травления. Сущность изобретения: слой TiN удаляется селективно к SiO, вольфраму и поликремнию при реактивном ионном травлении его в плазме O...
Тип: Изобретение
Номер охранного документа: 0002533740
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0bfd

Способ получения нанопорошков

Изобретение относится к порошковой металлургии, в частности к получению нанопорошка. Порошкообразное сырье в виде микрогранул с размером 20-60 мкм, состоящих из частиц сырья с размером 0,1-3 мкм и связующего компонента, имеющего температуру испарения не более 300°C, в количестве 5-25 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002534477
Дата охранного документа: 27.11.2014
10.06.2016
№216.015.45d4

Способ переработки лейкоксенового концентрата и устройство для его осуществления

Изобретение относится к переработке лейкоксеновых концентратов с высоким содержанием кремния. Способ и устройство для переработки упомянутых концентратов основаны на плазменно-дуговой восстановительной плавке концентрата при температуре 2500-3000 К и атмосферном давлении. При этом диоксид...
Тип: Изобретение
Номер охранного документа: 0002586190
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.9950

Способ изготовления катализатора из нанопроволоки

Изобретение относится к нанотехнологии, может быть использовано в химической промышленности для создания эффективных катализаторов. Заключается в том, что на подложку наносят вспомогательный слой, в котором формируют ряды канавок нанометровой глубины с вертикальными стенками, наносят слой...
Тип: Изобретение
Номер охранного документа: 0002609788
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bc5d

Способ получения карбидов элементов и композиций элемент-углерод

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002616058
Дата охранного документа: 12.04.2017
26.08.2017
№217.015.d96c

Способ переработки лейкоксенового концентрата

Изобретение относится к переработке титановых концентратов с высоким содержанием кремния, например лейкоксеновых концентратов. Cпособ переработки лейкоксеновых концентратов включает плавление концентрата совместно с содой. При этом содержащийся в концентрате диоксид кремния взаимодействует с...
Тип: Изобретение
Номер охранного документа: 0002623564
Дата охранного документа: 27.06.2017
29.12.2017
№217.015.fd6a

Способ получения порошка карбонитрида титана

Изобретение относится к получению порошка карбонитрида титана. Способ включает генерирование потока термической плазмы в плазменном реакторе с ограниченным струйным течением, подачу в поток термической плазмы паров тетрахлорида титана, газообразного углеводорода и азота с обеспечением их...
Тип: Изобретение
Номер охранного документа: 0002638471
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.1b8b

Реактор со стабилизированной высокотемпературной приосевой струей

Изобретение относится к области высокотемпературных аппаратов, используемых в химических и металлургических производствах, в частности к реактору со стабилизированной высокотемпературной приосевой струей периферийным вихревым потоком. Реактор включает корпус с рубашкой охлаждения,...
Тип: Изобретение
Номер охранного документа: 0002636704
Дата охранного документа: 27.11.2017
+ добавить свой РИД