×
29.05.2019
219.017.66f0

Результат интеллектуальной деятельности: ВЫСОКОТЕМПЕРАТУРНЫЙ ЗАЩИТНЫЙ СЛОЙ

Вид РИД

Изобретение

№ охранного документа
0002301284
Дата охранного документа
20.06.2007
Аннотация: Изобретение относится к высокотемпературному защитному слою и может быть использовано при производстве конструктивных элементов. Высокотемпературный защитный слой выполнен из сплава на основе никеля, содержащего следующие компоненты, мас.%: хром 23-27, алюминий 4-7, кремний 0,1-3, тантал 0,1-3, иттрий 0,2-2, бор 0,001-0,01, магний 0,001-0,01, кальций 0,001-0,01, никель и неизбежные примеси остальное. В частных случаях выполнения изобретения сплав наносят в вакууме, в защитном газе или на воздухе методами термонапыления, высокоскоростным напылением, электрохимическим осаждением или физико-химическим испарением. Слой может быть нанесен в виде покрытия на конструктивные элементы тепловых турбомашин. Данный слой обладает высокой стойкостью к окислению, а также коррозионной и термоциклической стойкостью. 9 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к высокотемпературному защитному слою согласно независимому пункту формулы.

Уровень техники

Такие высокотемпературные защитные слои находят применение, прежде всего, там, где должен быть защищен основной материал конструктивных элементов из жаропрочных сталей и/или сплавов, используемых при температурах свыше 600°С.

За счет этих высокотемпературных защитных слоев должно быть замедлено или полностью предотвращено воздействие высокотемпературной коррозии, прежде всего, серы, зол жидких топлив, кислорода, щелочноземельных металлов и ванадия. Такие высокотемпературные защитные слои выполнены с возможностью их нанесения непосредственно на основной материал защищаемого конструктивного элемента.

У конструктивных элементов газовых турбин высокотемпературные защитные слои имеют особое значение. Их наносят, прежде всего, на рабочие и направляющие лопатки, а также на теплоаккумулирующие секции газовых турбин.

Для изготовления этих конструктивных элементов применяют преимущественно аустенитный материал на основе никеля, кобальта или железа. При изготовлении конструктивных элементов газовых турбин в качестве основного материала применяются, прежде всего, никелевые суперсплавы.

До сих пор принято конструктивные элементы, предназначенные для газовых турбин, снабжать защитными слоями, образованными сплавами, основными компонентами которых являются никель, хром, алюминий и иттрий. Такие высокотемпературные защитные слои содержат матрицу, в которую помещена алюминийсодержащая фаза.

Большинство покрытий для высокотемпературных применений происходят из семейств NiCrAlY, CoCrAlY или NiCoCrAlY. Слои отличаются концентрацией «семейных элементов» никель, кобальт, хром, алюминий и иттрий и добавкой других элементов. Состав слоя в решающей степени определяет поведение при высокой температуре в окислительной или корродирующей атмосфере, при изменении температуры и при механической нагрузке. К тому же состав слоя определяет расходы на материал и изготовление. Многие известные слои показывают прекрасные свойства только в частичных аспектах. Хотя это и практикуется во всем мире, добавка кобальта, по собственным исследованиям, негативно влияет как на коррозионную стойкость, так и на расходы.

Из документов JP-A-53-085736, US-A-3620693, US-A-4477538, US-A-4537744, USA-3754903, US-A-4013424, US-A-4022587 и US-A-4743514 известны многочисленные сплавы семейства «лишенных кобальта NiCrAlY». Термодинамическое моделирование в интервале температур 800-1050°С фазового состояния этих сплавов показало, что специфические составы приводят к микроструктурам с нежелательными фазами или термически активированными фазовыми переходами, а именно σ- и/или β-NiAl в больших объемных долях.

Изложение изобретения

Исходя из описанного выше уровня техники, в основе изобретения лежит задача создания высокотемпературного защитного слоя, который был бы малозатратным и обладал бы высокой стойкостью к окислению, коррозионной и термоциклической стойкостью.

Эта задача решается, согласно изобретению, посредством признаков п.1 формулы.

Состав этого сплава, согласно изобретению, содержит (в мас.%) 23-27% хрома, 4-7% алюминия, 0,1-3% кремния, 0,1-3% тантала, 0,2-2% иттрия, 0,001-0,01% бора, 0,001-0,01% магния и 0,001-0,01% кальция. Все данные по массе относятся к общей массе данного сплава. Оставшаяся доля сплава состоит из никеля и неизбежных примесей. Преимущественно содержание алюминия лежит в пределах 5-6 мас.%.

Защитный слой, согласно изобретению, представляет собой сплав NiCrAlY. Он обладает значительно более высокой стойкостью к окислению и коррозии по сравнению с уже известными высокотемпературными защитными слоями. У высокотемпературного защитного слоя, согласно изобретению, следует констатировать, что при высоких температурах (в зависимости от выполнения выше 800°С) он содержит алюминийсодержащие γ- и γ'-фазы с объемной долей, по меньшей мере, 50%, обеспечивающие образование алюминийоксидсодержащего защитного слоя, а при низких и средних температурах (в зависимости от выполнения ниже 900°С) - хромсодержащие α-Cr-фазы (на фиг.1 обозначены ВСС) более чем в 5%, обеспечивающие образование хромоксидсодержащего защитного слоя.

Если к сплаву, образующему высокотемпературный защитный слой, добавить кремний и бор, то повышается адгезия алюминийоксидсодержащего покрывающего слоя при высокой температуре, что значительно улучшает защиту высокотемпературного защитного слоя и находящегося под ним конструктивного элемента. За счет добавления магния и кальция связываются, прежде всего, имеющиеся при изготовлении примеси, и за счет этого при температурах ниже 850-950°С повышается коррозионная стойкость. Количественное соотношение хрома и алюминия ограничено до 3,6-6,5, с тем чтобы предотвратить образование хрупких β-фаз. Количественное соотношение никеля и хрома ограничено до 2,3-3,0, с тем чтобы предотвратить образование хрупких σ-фаз, что повышает термоциклическую стойкость. Прочная и стойкая адгезия защитного слоя и его покрывающего слоя при частых изменениях температуры достигается посредством установленной специально для сплава доли иттрия.

Взятый здесь состав не показывает или показывает лишь незначительные объемные доли σ-фазы и β-NiAl-фазы (фиг.1), так что при термоциклировании следует ожидать значительных преимуществ. Сравнительный сплав на фиг.2 показывает аналогичный состав у некоторых элементов, однако из-за отличий других элементов возникает совершенно иная микроструктура, которая, по нашему опыту, не будет обладать достаточной термоциклической стойкостью для турбины и к тому же не сможет использоваться из-за начинающегося при температуре выше 900°С расплавления.

Обусловленная производством ингерентная примесь серы, которая обычно может достигать концентрации менее 10 частей на млн., а в отдельных случаях даже до 50 частей на млн., приводит к снижению стойкости к окислению и коррозии. Согласно изобретению, при нанесении покрытия добавляют микроэлементы Mg и Са, поглощающие серу.

Сплав наносят непосредственно на основной материал конструктивного элемента или на промежуточный слой, имеющий третий состав. Толщина слоя варьируется в зависимости от метода нанесения покрытия между 0,03 и 1,5 мм.

Краткое описание чертежей

Изобретение поясняется с помощью прилагаемых чертежей, на которых изображают:

фиг.1 - фазовое равновесие (молярная доля Ф [%] vs. температура [°С]) в соответствии с указанным здесь составом;

фиг.2 - фазовое равновесие (молярная доля Ф [%] vs. температура [°С]) в соответствии с указанным в US-A-4973445 составом.

Изображены только существенные для изобретения элементы.

Пути реализации изобретения

С помощью примера выполнения, описывающего изготовление покрытого конструктивного элемента газовой турбины или другого конструктивного элемента тепловой турбомашины, изобретение поясняется более подробно. Покрываемый конструктивный элемент газовой турбины изготовлен из аустенитного материала, в частности никелевого суперсплава. Перед нанесением покрытия конструктивный элемент сначала химически очищают, а затем ему с помощью струйного процесса придают шероховатость. Покрытие конструктивного элемента осуществляют в вакууме, в защитном газе или на воздухе методами термонапыления (LPPS, VPS, APS), высокоскоростным напылением (HVOF), электрохимическими методами, физико-химическим испарением (PVD, CVD) или иным, известным из уровня техники методом нанесения покрытия.

Для покрытия применяют сплав NiCrAlY, содержащий, согласно изобретению (в мас.%), 23-27% хрома, 4-7% алюминия, 0,1-3% кремния, 0,1-3% тантала, 0,2-2% иттрия, 0,001-0,01% бора, 0,001-0,01% магния и 0,001-0,01% кальция. Оставшаяся доля сплава состоит из никеля и неизбежных примесей. Преимущественно содержание алюминия лежит в пределах 5-6 мас.%. Все данные по массе относятся к общей массе применяемого сплава.

Сплав, согласно изобретению, обладает гораздо более высокой стойкостью к окислению и коррозии, чем уже известные высокотемпературные защитные слои. У высокотемпературного защитного слоя следует констатировать, что при высоких температурах (в зависимости от выполнения выше 800°С) он содержит алюминийсодержащие γ- и γ'-фазы с объемной долей, по меньшей мере, 50%, обеспечивающие образование алюминийоксидсодержащего защитного слоя, а при низких и средних температурах (в зависимости от выполнения ниже 900°С) - хромсодержащие α-Cr-фазы более чем в 5%, обеспечивающие образование хромоксидсодержащего защитного слоя.

Как видно из фиг.1, взятый здесь состав не показывает или показывает лишь незначительные объемные доли σ-фазы и β-NiAl-фазы или боридных фаз (на фиг.1 обозначены M2B_ORTH), так что при термоциклировании следует ожидать значительных преимуществ. Сравнительный сплав (фиг.2) показывает аналогичный состав у некоторых элементов, однако из-за отличий других элементов возникает совершенно иная микроструктура, которая, по нашему опыту, не будет обладать достаточной термоциклической стойкостью для турбины и к тому же не сможет использоваться из-за начинающегося при температуре выше 900°С расплавления.

Для улучшения адгезии алюминийоксидсодержащего покрывающего слоя при высокой температуре к базовому материалу, образующему высокотемпературный защитный слой, добавляют кремний и бор. За счет этого повышается защита высокотемпературного защитного слоя и находящегося под ним конструктивного элемента.

Обусловленная производством ингерентная примесь серы, которая обычно может достигать концентрации менее 10 частей на млн., а в отдельных случаях даже 50 частей на млн., приводит к снижению стойкости к окислению и коррозии. Согласно изобретению, при нанесении покрытия добавляют микроэлементы Mg и Са, поглощающие серу, за счет чего повышается коррозионная стойкость при температурах ниже 850-9500°С.

Количественное соотношение хрома и алюминия ограничено до 3,6-6,5, с тем чтобы предотвратить образование хрупких β-фаз. Количественное соотношение никеля и хрома ограничено до 2,3-3,0, с тем чтобы предотвратить образование хрупких σ-фаз, что повышает термоциклическую стойкость.

Прочная и стойкая адгезия защитного слоя и его покрывающего слоя при частых изменениях температуры достигается посредством установленной специально для сплава доли иттрия.

Образующий сплав материал имеется для процессов термонапыления в порошкообразном виде, и размер его зерен составляет преимущественно 5-90 мкм. У других приведенных выше методов сплав изготавливают в виде мишени или суспензии. Сплав наносят непосредственно на основной материал конструктивного элемента или на промежуточный слой, имеющий третий состав. Толщина слоя варьируется в зависимости от метода нанесения покрытия между 0,03 и 1,5 мм. После нанесения сплава конструктивный элемент подвергают термообработке. Ее осуществляют при температуре 1000-1200°С в течение примерно от 10 минут до 24 часов.

1.Высокотемпературныйзащитныйслойдляконструктивногоэлемента,выполненныйизсплаванаосновеникеля,содержащегохром,алюминий,танталииттрий,отличающийсятем,чтосплавдополнительносодержиткремний,бор,магнийикальцийприследующемсоотношениикомпонентов,мас.%:хром23-27,алюминий4-7,кремний0,1-3,тантал0,1-3,иттрий0,2-2,бор0,001-0,01,магний0,001-0,01,кальций0,001-0,01,никельинеизбежныепримесиостальное.12.Слойпоп.1,отличающийсятем,чтосплавсодержит5-6мас.%алюминия.23.Слойпоп.1или2,отличающийсятем,чтоколичественноесоотношениехромаиалюминиявсплавесоставляет3,6-6,5.34.Слойпоп.1или2,отличающийсятем,чтоколичественноесоотношениеникеляихромавсплавесоставляет2,3-3,0.45.Слойпоп.1или2,отличающийсятем,чтопритемпературе800-1050°Ссплавсодержиталюминийсодержащиеγ-иγ'-фазы,суммаобъемныхдолейкоторыхсоставляетболее50%.56.Слойпоп.1или2,отличающийсятем,чтопритемпературе800-900°Ссплавсодержитхромсодержащиеα-Cr-фазы,объемнаядолякоторыхсоставляетболее5%.67.Слойпоп.1или2,отличающийсятем,чтооннанесенввакууме,взащитномгазеилинавоздухеметодамитермонапыления(LPPS,VPS,APS),высокоскоростнымнапылением(HVOF),электрохимическимосаждениемилифизико-химическимиспарением(PVD,CVD).78.Слойпоп.1или2,отличающийсятем,чтооннанесенввидепокрытиянаконструктивныеэлементытепловыхтурбомашин.89.Слойпоп.1или2,отличающийсятем,чтооннанесеннепосредственнонаосновнойматериалконструктивногоэлементаилинапромежуточныйслойиимееттолщину0,03-1,5мм.910.Слойпоп.1или2,отличающийсятем,чтооннанесенподтеплоизолирующимслоем.10
Источник поступления информации: Роспатент

Показаны записи 31-40 из 218.
10.11.2014
№216.013.0427

Опора теплообменных труб и крепежный узел для трубчатого теплообменника

Изобретение относится к области теплотехники и может быть использовано в трубных опорах теплообменников, используемых для обмена сред тепловой энергией без их смешивания. Предметом изобретения, в частности, является опора для пучка теплообменных труб, образующая сетку в секущей плоскости;...
Тип: Изобретение
Номер охранного документа: 0002532461
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.042c

Насос с бетонной спиральной камерой

Изобретение относится к центробежному насосу (1), который может перекачивать жидкость с большими объемными расходами свыше 20 м/с. Насос содержит рабочее колесо (3), установленное с возможностью вращения вокруг оси и направления жидкости к бетонной спиральной камере (4), расположенной вокруг...
Тип: Изобретение
Номер охранного документа: 0002532466
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0893

Контур питания паром турбины

Изобретение относится к энергетике. Контур питания паром турбины, включающий в себя n основных паровых линий и n' линий подвода пара к турбине, причем количество n' линий подвода пара к турбине точно превышает количество n основных паровых линий, причём он содержит n прямых линий подвода пара к...
Тип: Изобретение
Номер охранного документа: 0002533596
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0b1d

Уплотнительное устройство для насоса

Изобретение относится к уплотнительной технике. Устройство (1) для уплотнения насоса электростанции содержит корпус насоса, включающий в себя первый и второй трубопроводы для прохождения текучей среды, вал, включающий в себя, рядом с корпусом насоса, первый канал для текучей среды, механическое...
Тип: Изобретение
Номер охранного документа: 0002534253
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0f8c

Регулируемый мельничный сепаратор

Изобретение относится к регулируемым сепараторам, позволяющим регулировать размеры частиц измельчаемого материала на мельнице для твердого топлива и может быть использована для отделения более крупных частиц от более мелких частиц, захваченных восходящими воздушными потоками. Сепараторная...
Тип: Изобретение
Номер охранного документа: 0002535397
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fb9

Способ эксплуатации комбинированной электростанции

Изобретение относится к энергетике. В способе эксплуатации комбинированной электростанции, включающей в себя газовую турбину и паровую турбину, соответственно посредством подключенного электрогенератора вырабатывают переменное напряжение соответствующей частоты и отдают его сети переменного...
Тип: Изобретение
Номер охранного документа: 0002535442
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.10b1

Новые твердые материалы и способ удаления со из потока газа

Изобретение касается способа и системы для удаления диоксида углерода из технологического газа, образующегося во время сгорания топлива, способа получения сорбента. Способ и система для удаления диоксида углерода из технологического газа, образующегося во время сгорания топлива, где упомянутая...
Тип: Изобретение
Номер охранного документа: 0002535696
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.139b

Направляющая лопатка турбины

Статор турбины, в частности газовой турбины, содержит несколько направляющих лопаток. По меньшей мере каждая из двух смежных в направлении вдоль окружности направляющих лопаток имеет аэродинамический профиль, бандажную полку, расположенную у внутреннего торца аэродинамического профиля, а также...
Тип: Изобретение
Номер охранного документа: 0002536443
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1d83

Способ переналадки паровой турбины

Изобретение заключается в способе переналадки паровой турбины (1), пар для которой создается парогенератором. Способ позволяет настраивать турбину (1) для перехода от первого максимума тепловой мощности парогенератора ко второму максимуму тепловой мощности парогенератора. Турбина (1) включает в...
Тип: Изобретение
Номер охранного документа: 0002538983
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1f1b

Осевая газовая турбина

Осевая газовая турбина содержит ротор и статор. Статор представляет собой корпус, охватывающий ротор снаружи с образованием между ними тракта течения горячего газа, через который протекает горячий газ, полученный в камере сгорания. Ротор содержит вал с осевыми пазами, в частности, елочного типа...
Тип: Изобретение
Номер охранного документа: 0002539404
Дата охранного документа: 20.01.2015
+ добавить свой РИД