×
29.05.2019
219.017.66f0

Результат интеллектуальной деятельности: ВЫСОКОТЕМПЕРАТУРНЫЙ ЗАЩИТНЫЙ СЛОЙ

Вид РИД

Изобретение

№ охранного документа
0002301284
Дата охранного документа
20.06.2007
Аннотация: Изобретение относится к высокотемпературному защитному слою и может быть использовано при производстве конструктивных элементов. Высокотемпературный защитный слой выполнен из сплава на основе никеля, содержащего следующие компоненты, мас.%: хром 23-27, алюминий 4-7, кремний 0,1-3, тантал 0,1-3, иттрий 0,2-2, бор 0,001-0,01, магний 0,001-0,01, кальций 0,001-0,01, никель и неизбежные примеси остальное. В частных случаях выполнения изобретения сплав наносят в вакууме, в защитном газе или на воздухе методами термонапыления, высокоскоростным напылением, электрохимическим осаждением или физико-химическим испарением. Слой может быть нанесен в виде покрытия на конструктивные элементы тепловых турбомашин. Данный слой обладает высокой стойкостью к окислению, а также коррозионной и термоциклической стойкостью. 9 з.п. ф-лы, 2 ил.

Область техники

Изобретение относится к высокотемпературному защитному слою согласно независимому пункту формулы.

Уровень техники

Такие высокотемпературные защитные слои находят применение, прежде всего, там, где должен быть защищен основной материал конструктивных элементов из жаропрочных сталей и/или сплавов, используемых при температурах свыше 600°С.

За счет этих высокотемпературных защитных слоев должно быть замедлено или полностью предотвращено воздействие высокотемпературной коррозии, прежде всего, серы, зол жидких топлив, кислорода, щелочноземельных металлов и ванадия. Такие высокотемпературные защитные слои выполнены с возможностью их нанесения непосредственно на основной материал защищаемого конструктивного элемента.

У конструктивных элементов газовых турбин высокотемпературные защитные слои имеют особое значение. Их наносят, прежде всего, на рабочие и направляющие лопатки, а также на теплоаккумулирующие секции газовых турбин.

Для изготовления этих конструктивных элементов применяют преимущественно аустенитный материал на основе никеля, кобальта или железа. При изготовлении конструктивных элементов газовых турбин в качестве основного материала применяются, прежде всего, никелевые суперсплавы.

До сих пор принято конструктивные элементы, предназначенные для газовых турбин, снабжать защитными слоями, образованными сплавами, основными компонентами которых являются никель, хром, алюминий и иттрий. Такие высокотемпературные защитные слои содержат матрицу, в которую помещена алюминийсодержащая фаза.

Большинство покрытий для высокотемпературных применений происходят из семейств NiCrAlY, CoCrAlY или NiCoCrAlY. Слои отличаются концентрацией «семейных элементов» никель, кобальт, хром, алюминий и иттрий и добавкой других элементов. Состав слоя в решающей степени определяет поведение при высокой температуре в окислительной или корродирующей атмосфере, при изменении температуры и при механической нагрузке. К тому же состав слоя определяет расходы на материал и изготовление. Многие известные слои показывают прекрасные свойства только в частичных аспектах. Хотя это и практикуется во всем мире, добавка кобальта, по собственным исследованиям, негативно влияет как на коррозионную стойкость, так и на расходы.

Из документов JP-A-53-085736, US-A-3620693, US-A-4477538, US-A-4537744, USA-3754903, US-A-4013424, US-A-4022587 и US-A-4743514 известны многочисленные сплавы семейства «лишенных кобальта NiCrAlY». Термодинамическое моделирование в интервале температур 800-1050°С фазового состояния этих сплавов показало, что специфические составы приводят к микроструктурам с нежелательными фазами или термически активированными фазовыми переходами, а именно σ- и/или β-NiAl в больших объемных долях.

Изложение изобретения

Исходя из описанного выше уровня техники, в основе изобретения лежит задача создания высокотемпературного защитного слоя, который был бы малозатратным и обладал бы высокой стойкостью к окислению, коррозионной и термоциклической стойкостью.

Эта задача решается, согласно изобретению, посредством признаков п.1 формулы.

Состав этого сплава, согласно изобретению, содержит (в мас.%) 23-27% хрома, 4-7% алюминия, 0,1-3% кремния, 0,1-3% тантала, 0,2-2% иттрия, 0,001-0,01% бора, 0,001-0,01% магния и 0,001-0,01% кальция. Все данные по массе относятся к общей массе данного сплава. Оставшаяся доля сплава состоит из никеля и неизбежных примесей. Преимущественно содержание алюминия лежит в пределах 5-6 мас.%.

Защитный слой, согласно изобретению, представляет собой сплав NiCrAlY. Он обладает значительно более высокой стойкостью к окислению и коррозии по сравнению с уже известными высокотемпературными защитными слоями. У высокотемпературного защитного слоя, согласно изобретению, следует констатировать, что при высоких температурах (в зависимости от выполнения выше 800°С) он содержит алюминийсодержащие γ- и γ'-фазы с объемной долей, по меньшей мере, 50%, обеспечивающие образование алюминийоксидсодержащего защитного слоя, а при низких и средних температурах (в зависимости от выполнения ниже 900°С) - хромсодержащие α-Cr-фазы (на фиг.1 обозначены ВСС) более чем в 5%, обеспечивающие образование хромоксидсодержащего защитного слоя.

Если к сплаву, образующему высокотемпературный защитный слой, добавить кремний и бор, то повышается адгезия алюминийоксидсодержащего покрывающего слоя при высокой температуре, что значительно улучшает защиту высокотемпературного защитного слоя и находящегося под ним конструктивного элемента. За счет добавления магния и кальция связываются, прежде всего, имеющиеся при изготовлении примеси, и за счет этого при температурах ниже 850-950°С повышается коррозионная стойкость. Количественное соотношение хрома и алюминия ограничено до 3,6-6,5, с тем чтобы предотвратить образование хрупких β-фаз. Количественное соотношение никеля и хрома ограничено до 2,3-3,0, с тем чтобы предотвратить образование хрупких σ-фаз, что повышает термоциклическую стойкость. Прочная и стойкая адгезия защитного слоя и его покрывающего слоя при частых изменениях температуры достигается посредством установленной специально для сплава доли иттрия.

Взятый здесь состав не показывает или показывает лишь незначительные объемные доли σ-фазы и β-NiAl-фазы (фиг.1), так что при термоциклировании следует ожидать значительных преимуществ. Сравнительный сплав на фиг.2 показывает аналогичный состав у некоторых элементов, однако из-за отличий других элементов возникает совершенно иная микроструктура, которая, по нашему опыту, не будет обладать достаточной термоциклической стойкостью для турбины и к тому же не сможет использоваться из-за начинающегося при температуре выше 900°С расплавления.

Обусловленная производством ингерентная примесь серы, которая обычно может достигать концентрации менее 10 частей на млн., а в отдельных случаях даже до 50 частей на млн., приводит к снижению стойкости к окислению и коррозии. Согласно изобретению, при нанесении покрытия добавляют микроэлементы Mg и Са, поглощающие серу.

Сплав наносят непосредственно на основной материал конструктивного элемента или на промежуточный слой, имеющий третий состав. Толщина слоя варьируется в зависимости от метода нанесения покрытия между 0,03 и 1,5 мм.

Краткое описание чертежей

Изобретение поясняется с помощью прилагаемых чертежей, на которых изображают:

фиг.1 - фазовое равновесие (молярная доля Ф [%] vs. температура [°С]) в соответствии с указанным здесь составом;

фиг.2 - фазовое равновесие (молярная доля Ф [%] vs. температура [°С]) в соответствии с указанным в US-A-4973445 составом.

Изображены только существенные для изобретения элементы.

Пути реализации изобретения

С помощью примера выполнения, описывающего изготовление покрытого конструктивного элемента газовой турбины или другого конструктивного элемента тепловой турбомашины, изобретение поясняется более подробно. Покрываемый конструктивный элемент газовой турбины изготовлен из аустенитного материала, в частности никелевого суперсплава. Перед нанесением покрытия конструктивный элемент сначала химически очищают, а затем ему с помощью струйного процесса придают шероховатость. Покрытие конструктивного элемента осуществляют в вакууме, в защитном газе или на воздухе методами термонапыления (LPPS, VPS, APS), высокоскоростным напылением (HVOF), электрохимическими методами, физико-химическим испарением (PVD, CVD) или иным, известным из уровня техники методом нанесения покрытия.

Для покрытия применяют сплав NiCrAlY, содержащий, согласно изобретению (в мас.%), 23-27% хрома, 4-7% алюминия, 0,1-3% кремния, 0,1-3% тантала, 0,2-2% иттрия, 0,001-0,01% бора, 0,001-0,01% магния и 0,001-0,01% кальция. Оставшаяся доля сплава состоит из никеля и неизбежных примесей. Преимущественно содержание алюминия лежит в пределах 5-6 мас.%. Все данные по массе относятся к общей массе применяемого сплава.

Сплав, согласно изобретению, обладает гораздо более высокой стойкостью к окислению и коррозии, чем уже известные высокотемпературные защитные слои. У высокотемпературного защитного слоя следует констатировать, что при высоких температурах (в зависимости от выполнения выше 800°С) он содержит алюминийсодержащие γ- и γ'-фазы с объемной долей, по меньшей мере, 50%, обеспечивающие образование алюминийоксидсодержащего защитного слоя, а при низких и средних температурах (в зависимости от выполнения ниже 900°С) - хромсодержащие α-Cr-фазы более чем в 5%, обеспечивающие образование хромоксидсодержащего защитного слоя.

Как видно из фиг.1, взятый здесь состав не показывает или показывает лишь незначительные объемные доли σ-фазы и β-NiAl-фазы или боридных фаз (на фиг.1 обозначены M2B_ORTH), так что при термоциклировании следует ожидать значительных преимуществ. Сравнительный сплав (фиг.2) показывает аналогичный состав у некоторых элементов, однако из-за отличий других элементов возникает совершенно иная микроструктура, которая, по нашему опыту, не будет обладать достаточной термоциклической стойкостью для турбины и к тому же не сможет использоваться из-за начинающегося при температуре выше 900°С расплавления.

Для улучшения адгезии алюминийоксидсодержащего покрывающего слоя при высокой температуре к базовому материалу, образующему высокотемпературный защитный слой, добавляют кремний и бор. За счет этого повышается защита высокотемпературного защитного слоя и находящегося под ним конструктивного элемента.

Обусловленная производством ингерентная примесь серы, которая обычно может достигать концентрации менее 10 частей на млн., а в отдельных случаях даже 50 частей на млн., приводит к снижению стойкости к окислению и коррозии. Согласно изобретению, при нанесении покрытия добавляют микроэлементы Mg и Са, поглощающие серу, за счет чего повышается коррозионная стойкость при температурах ниже 850-9500°С.

Количественное соотношение хрома и алюминия ограничено до 3,6-6,5, с тем чтобы предотвратить образование хрупких β-фаз. Количественное соотношение никеля и хрома ограничено до 2,3-3,0, с тем чтобы предотвратить образование хрупких σ-фаз, что повышает термоциклическую стойкость.

Прочная и стойкая адгезия защитного слоя и его покрывающего слоя при частых изменениях температуры достигается посредством установленной специально для сплава доли иттрия.

Образующий сплав материал имеется для процессов термонапыления в порошкообразном виде, и размер его зерен составляет преимущественно 5-90 мкм. У других приведенных выше методов сплав изготавливают в виде мишени или суспензии. Сплав наносят непосредственно на основной материал конструктивного элемента или на промежуточный слой, имеющий третий состав. Толщина слоя варьируется в зависимости от метода нанесения покрытия между 0,03 и 1,5 мм. После нанесения сплава конструктивный элемент подвергают термообработке. Ее осуществляют при температуре 1000-1200°С в течение примерно от 10 минут до 24 часов.

1.Высокотемпературныйзащитныйслойдляконструктивногоэлемента,выполненныйизсплаванаосновеникеля,содержащегохром,алюминий,танталииттрий,отличающийсятем,чтосплавдополнительносодержиткремний,бор,магнийикальцийприследующемсоотношениикомпонентов,мас.%:хром23-27,алюминий4-7,кремний0,1-3,тантал0,1-3,иттрий0,2-2,бор0,001-0,01,магний0,001-0,01,кальций0,001-0,01,никельинеизбежныепримесиостальное.12.Слойпоп.1,отличающийсятем,чтосплавсодержит5-6мас.%алюминия.23.Слойпоп.1или2,отличающийсятем,чтоколичественноесоотношениехромаиалюминиявсплавесоставляет3,6-6,5.34.Слойпоп.1или2,отличающийсятем,чтоколичественноесоотношениеникеляихромавсплавесоставляет2,3-3,0.45.Слойпоп.1или2,отличающийсятем,чтопритемпературе800-1050°Ссплавсодержиталюминийсодержащиеγ-иγ'-фазы,суммаобъемныхдолейкоторыхсоставляетболее50%.56.Слойпоп.1или2,отличающийсятем,чтопритемпературе800-900°Ссплавсодержитхромсодержащиеα-Cr-фазы,объемнаядолякоторыхсоставляетболее5%.67.Слойпоп.1или2,отличающийсятем,чтооннанесенввакууме,взащитномгазеилинавоздухеметодамитермонапыления(LPPS,VPS,APS),высокоскоростнымнапылением(HVOF),электрохимическимосаждениемилифизико-химическимиспарением(PVD,CVD).78.Слойпоп.1или2,отличающийсятем,чтооннанесенввидепокрытиянаконструктивныеэлементытепловыхтурбомашин.89.Слойпоп.1или2,отличающийсятем,чтооннанесеннепосредственнонаосновнойматериалконструктивногоэлементаилинапромежуточныйслойиимееттолщину0,03-1,5мм.910.Слойпоп.1или2,отличающийсятем,чтооннанесенподтеплоизолирующимслоем.10
Источник поступления информации: Роспатент

Показаны записи 171-180 из 218.
10.12.2015
№216.013.97cc

Способ смешивания разбавляющего воздуха в системе последовательного сгорания газовой турбины

Изобретение относится к энергетике. Способ смешивания разбавляющего воздуха с горячим основным потоком в системе последовательного сгорания газовой турбины, при этом газовая турбина содержит компрессор, первую камеру сгорания, соединенную ниже по потоку с компрессором, и горячие газы первой...
Тип: Изобретение
Номер охранного документа: 0002570480
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9917

Модульная система возбуждения

Изобретение относится к модульной системе возбуждения для испытаний сердечника статора. Устройство возбуждения для высокоэнергетических испытаний сердечников (5) статоров электрогенераторов или двигателей, содержащее один или несколько модулей возбуждения, при этом каждый модуль возбуждения...
Тип: Изобретение
Номер охранного документа: 0002570811
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.99c4

Осевой завихритель для камеры сгорания газовой турбины

Изобретение относится к энергетике. Осевой завихритель для камеры сгорания газовой турбины содержит кольцо лопаток с множеством лопаток завихрителя, распределенных по окружности вокруг оси завихрителя, при этом каждая из упомянутых лопаток завихрителя содержит заднюю кромку. Для достижения...
Тип: Изобретение
Номер охранного документа: 0002570989
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.99c5

Демпфирующее устройство для камеры сгорания газовой турбины

Демпфирующее устройство для камеры сгорания газовой турбины содержит стенку с первой внутренней стенкой и второй наружной стенкой, расположенными на расстоянии друг от друга, множество охлаждающих каналов, продолжающихся по существу параллельно между первой внутренней стенкой и второй наружной...
Тип: Изобретение
Номер охранного документа: 0002570990
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a1e7

Смесительный элемент для газотурбинных установок с рециркуляцией дымового газа

Изобретение относится к области рециркуляции дымового газа в газотурбинных установках, а именно к элементам для смешивания дымового газа с окружающим воздухом выше по потоку от компрессора. Всасывающая секция (2) выше по потоку от впуска компрессора (1) газотурбинной установки (1-7) с...
Тип: Изобретение
Номер охранного документа: 0002573089
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a1ec

Газотурбинный двигатель

Газотурбинный двигатель включает в себя компрессор, осуществляющий сжатие воздуха, поступающего из воздухозаборника, камеру сгорания, в которой осуществляется сжигание топлива с использованием сжатого воздуха, в результате чего вырабатывается горячий газ, и турбину. Турбина имеет ротор или вал...
Тип: Изобретение
Номер охранного документа: 0002573094
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a1ed

Вращающаяся проточная машина

Изобретение относится к вращающейся проточной машине, содержащей роторный узел, вращающийся вокруг оси (13) вращения, вокруг которого в по меньшей мере одной части осевой области на радиальном расстоянии предусмотрен неподвижный внутренний корпус (IH), выполненный с возможностью разделения...
Тип: Изобретение
Номер охранного документа: 0002573095
Дата охранного документа: 20.01.2016
27.02.2016
№216.014.c0d5

Камера сгорания газовой турбины (варианты) и способ управления воздушным потоком, подаваемым в камеру сгорания газовой турбины

Изобретение относится к способу управления воздушным потоком, подаваемым в камеру сгорания, и к камере сгорания. Камера сгорания газовой турбины содержит корпус с трубопроводом подачи топлива для подачи топлива в корпус и трубопроводом подачи воздуха-носителя для подачи воздуха в корпус....
Тип: Изобретение
Номер охранного документа: 0002576287
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c23b

Способ изготовления металлического компонента посредством аддитивного лазерного изготовления

Изобретение относится к технологии изготовления трехмерной металлической детали(11), представляющей собой деталь газовой турбины в виде лопатки, лопасти или теплового экрана, которая может быть использована в компрессоре, камере сгорания или турбинной секции газовой турбины. Деталь (11)...
Тип: Изобретение
Номер охранного документа: 0002574536
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c280

Камера сгорания (варианты) и глушитель для газовых турбин

Камера сгорания газовой турбины, включающая в себя глушитель, содержащий полость резонатора с впуском и трубой горловины, сообщающейся по текучей среде с внутренней частью камеры сгорания и полостью резонатора, и компенсационный узел. Компенсационный узел соединен с возможностью поворота с...
Тип: Изобретение
Номер охранного документа: 0002574108
Дата охранного документа: 10.02.2016
+ добавить свой РИД