×
29.05.2019
219.017.657a

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПЛАСТИЧЕСКИХ СВОЙСТВ МЕТАЛЛА ТРУБОПРОВОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к трубопроводному транспорту и может использоваться для определения пластических свойств металла действующих трубопроводов. Образцы металла, аналогичного металлу трубопровода, подвергают ступенчатому статическому нагружению до предела упругости и получают экспериментальные зависимости между показателями микротвердости и пластичности металла. На каждой ступени нагружения образцов многократно измеряют микротвердость, рассчитывают коэффициент асимметрии плотности распределения значений микротвердости, строят график экспериментальной зависимости пластических свойств образцов металла от среднего значения коэффициента асимметрии за время нагружения. В трубопроводе ступенчато меняют давление до рабочего давления и на каждой ступени повышения давления многократно измеряют микротвердость напряженного металла трубопровода, определяют показатели пластичности металла трубопровода с помощью полученной на образцах зависимости. Позволяет прогнозировать потенциальный характер разрушения трубопровода. 2 табл. 1 ил.

Изобретение относится к области испытания физико-механических свойств материалов металлических конструкций при деформировании и может использоваться для определения пластических свойств металла трубопроводов.

Металл труб магистрального трубопровода должен иметь высокие не только прочностные, но и пластические свойства. В этом случае металл способен без разрушения противостоять спонтанно изменяющимся нагрузкам.

В процессе эксплуатации пластические свойства металла могут снижаться. Поэтому для проведения предупреждающих разрушение мер необходимо выявлять места металла со сниженными пластическими свойствами.

Существующие методы определения пластических свойств металла деталей и элементов трубопроводов преимущественно основаны на лабораторных испытаниях образцов трубного материала в различных температурно-силовых режимах (Методы испытания, контроля и исследования машиностроительных материалов: Справ, пособие. Т.2. Методы исследования механических свойств металлов. / Под. ред. А.Т.Туманова. - М.: Машиностроение, 1971. - 320 с).

Основным недостатком лабораторных испытаний является необходимость проведения сложных имитационных экспериментов с определением «средних» характеристик механических свойств и разрушения материала.

Известен способ определения пластических свойств материала конструкции по характеру разрушения, заключающийся в доведении конструкции до разрушения, определении особенностей и механизма разрушения путем исследования поверхности изломов в очаге разрушения методом фрактографии (Изломы конструкционных сталей: Справ. изд. Герасимова Л.П., Ежов А.А., Маресев М.И. Металлургия, 1987. - 272 с).

Основным недостатком известного способа является невозможность прогнозирования характера разрушения конструкции без ее физического разрушения.

Известен способ определения пластических свойств материала, взятый нами в качестве прототипа, заключающийся в установлении экспериментальных зависимостей между показателями пластичности и твердостью материала на образцах, измерении твердости материала и определении показателей пластичности (δ, ψ) по известным зависимостям (Марковец М.П. Определение механических свойств металлов по твердости. - М.: Машиностроение, 1979.- 191 с.114-117].

Недостатками известного способа является следующее.

Недостаточная точность прогнозирования пластических свойств металла трубопроводов при разрушении в силу того, что при исследовании твердости применяют пластическое деформирование поверхности металла сжатием, а при эксплуатации и разрушении трубопроводов на металл действует растягивающая нагрузка. Несоответствие прикладываемых при испытаниях нагрузок приводит к ошибке при определении пластических свойств.

Определение пластических свойств по твердости выполняют при каком-либо одном состоянии металла трубопровода, чаще всего без избыточного внутреннего давления, то есть в ненапряженном металле. Однако пластическое течение металла вплоть до его начала готовится в структуре во время всего цикла статического нагружения, что также не учитывается и приводит к погрешности определения пластических свойств.

Определение пластических свойств по твердости, например по Бринеллю, суммирует эффект от структурных составляющих стали, а перестройка структуры при пластическом деформировании происходит на микроуровне, что также делает данный метод недостаточно чувствительным в этих условиях.

Задачей изобретения является повышение точности определения пластических свойств металла трубопроводов.

Повышение точности определения пластических свойств металла трубопроводов достигается за счет применения статической растягивающей испытательной нагрузки, приложенной к поверхности трубопровода, вместо нагрузки сжатием, исследования всего цикла статического нагружения металла трубопроводов за счет ступенчатого прироста внутреннего давления до предела упругости вместо однократной пробы на твердость при каком-либо статическом состоянии и определения микротвердости вместо классической пробы на твердость.

Поставленная задача решается тем, что в известном способе определения пластических свойств металла трубопроводов, включающем получение экспериментальных зависимостей между показателями твердости и пластичности металла на образцах, измерение твердости металла трубопроводов и определение показателей пластичности с помощью полученных зависимостей, согласно изобретению образцы металла различной пластичности подвергают статическому ступенчатому нагружению до предела упругости, на каждой ступени нагружения многократно измеряют микротвердость, рассчитывают коэффициент асимметрии плотности распределения значений микротвердости, строят график экспериментальной зависимости пластических свойств образцов металла от среднего значения коэффициента асимметрии за время нагружения, ступенчато меняют в трубопроводе давление до рабочего давления, на каждой ступени повышения давления многократно измеряют микротвердость напряженного металла трубопровода и определяют показатели пластичности металла трубопровода с помощью полученной на образцах зависимости.

В качестве пояснения приводим следующее.

При механическом нагружении металла происходят сложные процессы изменения дислокационной структуры. В силу того что структура поликристаллических конструкционных сталей гетерогенна, разные элементы (участки) конструкции имеют различные характеристики механических свойств, разную сопротивляемость деформациям. Поэтому в ходе нагружения конструкция деформируется неоднородно, что приводит к неоднородности распределения дислокационных систем и нарушений. В месте с наибольшей концентрацией дислокаций материал разупрочняется, что приводит к уменьшению микротвердости. В другом месте может упрочняться за счет блокирования дислокаций примесными атомами, что приводит к увеличению микротвердости. Исследуя асимметрию плотности распределения микротвердости в ходе механического нагружения относительно нормального распределения, не доводя конструкцию до разрушения, можно установить преимущественный потенциальный механизм ее разрушения и пластические свойства.

На чертеже показана зависимость относительного удлинения образцов после разрыва δ от среднего коэффициента асимметрии плотности распределения чисел микротвердости , измеренных при ступенчатом нагружении образцов.

Способ реализуют следующим образом.

Изготавливают несколько образцов для испытания на растяжение из металла, аналогичного металлу трубопровода, пластичность которого необходимо установить. Образцы подвергают ступенчатому статическому нагружению до достижения металлом предела упругости. На образцах на каждой ступени нагружения измеряют микротвердость не менее 50 раз. Представляют результаты измерений микротвердости в виде гистограммы плотности распределения и рассчитывают коэффициент асимметрии А для каждого образца и ступени нагружения. Определяют среднее значение коэффициента асимметрии для каждого образца. Испытывают образцы на растяжение, определяют показатели пластичности и строят график зависимости пластических свойств от .

Шлифованием подготавливают место для измерения микротвердости на трубопроводе. Ступенчато повышают давление в трубопроводе до рабочего. На каждой ступени повышения давления выполняют не менее 50 измерений микротвердости. Рассчитывают коэффициент асимметрии А для каждой ступени, среднее значение за время подъема давления и определяют показатели пластичности материала с помощью полученной на образцах зависимости.

Пример

Необходимо определить относительное удлинение после разрыва δ металла подземного магистрального газопровода. Марка стали трубопровода - 17Г1С. Условный предел текучести стали - не менее 325 МПа. Диаметр трубопровода 1220 мм, толщина стенки - 12 мм. Рабочее давление транспортируемого газа - 5,5 МПа.

Для проведения измерений на трубопроводе снижают давление в обследуемом газопроводе до атмосферного. Откапывают газопровод. Удаляют фрагмент изоляционного покрытия трубы площадью 100 см2. В месте удаления покрытия наждачной бумагой подготавливают поверхность измерения до получения металлического блеска и выполняют 100 измерений микротвердости.

При действии внутреннего давления 5,5 МПа в металле газопровода возникают кольцевые напряжения, которые рассчитываются по известной формуле , где Р - внутреннее давление, МПа, D - внутренний диаметр газопровода, мм, h - толщина стенки трубы, мм. При условии отсутствия напряжений изгиба (σИЗГ=0) и напряжений от температурного перепада (σt=0) эквивалентные напряжения, возникающие в металле трубопровода от внутреннего давления, составят 0,889 σКЦ

Известно, что эквивалентные напряжения, возникающие в трубопроводе от внутреннего давления, приравниваются к напряжениям, возникающим в образце при одноосном растяжении статической нагрузкой.

Ступенчатое повышение давления в газопроводе до 5,5 МПа с шагом в 1,0 МПа вызывает в металле газопровода кольцевые и эквивалентные напряжения, величины которых представлены в таблице 1.

Таблица 1
Таблица соответствия значений внутреннего давления в газопроводе и вызываемых им напряжений в металле трубопровода
Давление в газопроводе (Р), МПа01,02,03,04,05,5
Возникающие кольцевые напряжения в металле, σКЦ, МПа049,899,7149,5199,3247,1
Возникающие эквивалентные напряжения в металле, σЭКВ, МПа044,388,6132,9177,2243,7

Из различных фрагментов труб стали марки 17Г1С, в т.ч. эксплуатировавшихся в составе магистрального газопровода, изготавливают 10 стандартных образцов для испытания на растяжение (ГОСТ 1497-84. Металлы. Методы испытания на растяжение. М.: Изд-во стандартов, 1984. 17 с.).

Шлифованием подготавливают поверхность образцов для измерения микротвердости, зажимают образцы в захватах разрывной машины MP-100. Ступенчато с шагом в 50 МПа нагружают образцы и создают в них растягивающие напряжения, эквивалентные напряжениям, возникающим в металле газопровода, вплоть до достижения ими предела упругости (280-300 МПа для различных образцов). На каждой ступени нагружения выполняют 100 измерений микротвердости прибором УЗИТ-2М. Доводят образцы до разрушения и определяют относительное удлинение после разрыва δ (%).

Рассчитывают коэффициент асимметрии плотности распределения чисел твердости А для каждого образца и ступени нагружения, определяют среднее значение коэффициента асимметрии и строят зависимость

Выборочно на некоторых образцах с помощью прибора ПИМ-ДВ1, в котором реализован принцип измерения характеристик механических свойств металла по твердости (по способу прототипу), определяют характеристику относительного удлинения металла после разрыва в месте измерений микротвердости.

Значения коэффициентов асимметрии плотности распределения чисел микротвердости при напряжениях, возникающих в образце при ступенчатом повышении нагрузки от 0 до 300 МПа с шагом 50 МПа, средние значения коэффициентов асимметрии, величины относительного удлинения образцов после разрыва, установленные по графику, представленному на чертеже, характеристики механических свойств металла образцов, которые определены при отсутствии нагрузки на образцах с помощью прибора ПИМ-ДВ1, а также величины относительного удлинения после разрыва, полученные по завершении механических испытаний образцов, представлены в таблице 2.

Таблица 2
Результаты определения микротвердости и пластических свойств металла образцов по заявляемому способу, способу-прототипу и эталонному способу
№ образца металлаКоэффициент асимметрии плотности распределения чисел микротвердости при ступенчатом приращении напряжений в металле образцов от 0 до 300 МПаСредний коэффициент асимметрии Относительное удлинение после разрыва δ, %Характеристики механических свойств (прибор ПИМ-ДВ1) по способу-прототипуМеханические испытания
по эталонному способу δ, %
Твердость по Брине ллю, НВУсловный предел текучести σ0,2,МПаПредел прочности σВ, МПаОтносит. удлинение после разрыва δ, %
050100150200250300
1-0,0945-0,12510,41890,5891-0,14610,38710,58990,3741182135097031918
20,6545-0,56560,7894-1,5891-1,8569-1,1245-0,6811-0,3819211753705602321
30,1287-1,32580,2651-2,9832-1,8569-1,741-1,6811-1,313425
4-0,12580,8452-0,45122,71220,95211,83650,67560,9206191994546472119
50,2259-0,8952-2,33180,6523-1,1256-1,0891-0,3241-0,698222
61,2581-0,1887-0,06222,89512,36541,83652,11421,459715
7-0,11870,9336-0,39841,9571-0,98231,83651,22140,6356172185287231917
8-0,9774-2,35720,2525-2,9832-1,8569-2,994-1,783-1,814124
9-0,11452,2564-0,58842,78541,55983,34713,74551,85599
10-0,01882,5774-0,27691,68472,25433,84593,88921,99369

Рассчитывают коэффициенты асимметрии плотности распределения микротвердости металла газопровода на каждой ступени и определяют среднее значение коэффициента. Установлено, что . По полученной на образцах зависимости (см. чертеж) определяют, что величина относительного удлинения после разрыва металла газопроводаδ=23%, что не ниже величины, регламентируемой для данной марки стали (Марочник сталей и сплавов. / В.Г.Сорокин, А.В.Волосникова, С.А.Вяткин и др. Под. общ. ред. В.Г.Сорокина. - М.: Машиностроение, 1989. - 640 с.), т.е. можно прогнозировать, что преимущественный механизм развития разрушения на обследуемой трубе - вязкий.

Предлагаемый способ позволяет повысить точность определения предела текучести металла трубопроводов и дать прогноз потенциального характера разрушения трубопроводов без доведения металла трубопроводов до пластического течения, то есть без какого-либо необратимого механического воздействия.

Для подтверждения достижения поставленной задачи - повышения точности определения пластических свойств металла трубопровода заявляемым способом сравнивали величины относительного удлинения образцов после разрыва, полученные при испытании их по заявляемому способу, способу-прототипу и способу механических испытаний, выбранному в качестве эталонного способа определения пластических свойств материала.

Из таблицы 2 следует, что предлагаемый метод определения пластических свойств металла, а именно прогнозирования относительного удлинения после разрыва, наиболее точно соответствует результатам механических испытаний, выбранных в качестве эталонного способа определения пластических свойств, в то время как определение относительного удлинения по способу-прототипу, т.е. по зависимости его от твердости дает 1-2% расхождения, что для прогноза пластических свойств длительно эксплуатируемых газопроводов очень важно.

Предлагаемый способ может быть применен при проведении ремонта газопроводов, связанного с принудительным его изгибом. До или в ходе ремонта тестируют пластические свойства металла труб. Если установлено, что металл газопровода имеет недостаточные по сравнению с нормативом значения пластических свойств, то при эксплуатации принимают меры, ограничивающие дополнительные статические и циклические нагрузки на газопровод. Если таковые меры применить невозможно, то трубы, имеющие недостаточную пластичность металла, заменяют на новые.

Способопределенияпластическихсвойствметаллатрубопроводов,включающийполучениеэкспериментальныхзависимостеймеждупоказателямитвердостиипластичностиметалланаобразцах,измерениетвердостиметаллатрубопроводовиопределениепоказателейпластичностиспомощьюполученныхзависимостей,отличающийсятем,чтообразцыметалларазличнойпластичностиподвергаютстатическомуступенчатомунагружениюдопределаупругости,накаждойступенинагружениямногократноизмеряютмикротвердость,рассчитываюткоэффициентасимметрииплотностираспределениязначениймикротвердости,строятграфикэкспериментальнойзависимостипластическихсвойствобразцовметаллаотсреднегозначениякоэффициентаасимметриизавремянагружения,ступенчатоменяютвтрубопроводедавлениедорабочегодавления,накаждойступениповышениядавлениямногократноизмеряютмикротвердостьнапряженногометаллатрубопроводаиопределяютпоказателипластичностиметаллатрубопроводаспомощьюполученнойнаобразцахзависимости.
Источник поступления информации: Роспатент

Показаны записи 1-3 из 3.
20.02.2019
№219.016.c033

Способ определения предела текучести материала

Изобретение относится к области испытания физико-механических свойств материалов. Сущность: осуществляют подготовку гладкой поверхности образца и ступенчатое нагружение образца внешней растягивающей силой. Перед нагружением на поверхности образца размечают не менее трех областей измерения...
Тип: Изобретение
Номер охранного документа: 0002339017
Дата охранного документа: 20.11.2008
29.05.2019
№219.017.6578

Способ предотвращения развития дефектов стенок трубопроводов

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте трубопроводов с трещинами и коррозионными дефектами. Уменьшают давление в трубопроводе, устанавливают разъемную муфту, сваривают горизонтальными продольными швами половины муфты, закачивают твердеющий...
Тип: Изобретение
Номер охранного документа: 0002343337
Дата охранного документа: 10.01.2009
29.05.2019
№219.017.66c2

Способ определения остаточного ресурса металла длительно эксплуатируемых стальных труб

Изобретение относится к испытательной технике. Сущность изобретения: вырезают заготовки из участка трубы с наибольшим значением коэрцитивной силы. Деформируют и искусственно их старят. Измеряют коэрцитивную силу. Изготавливают и проводят испытания образцов, аппроксимируют зависимость изменения...
Тип: Изобретение
Номер охранного документа: 0002339018
Дата охранного документа: 20.11.2008
Показаны записи 51-60 из 80.
11.03.2019
№219.016.dcec

Способ определения механических напряжений в стальных конструкциях

Изобретение относится к области оценки технического состояния конструкций и может быть использовано для определения механических напряжений, например, в стальных трубопроводах надземной прокладки. Способ определения механических напряжений в стальных конструкциях заключаются в том, что...
Тип: Изобретение
Номер охранного документа: 0002439530
Дата охранного документа: 10.01.2012
11.03.2019
№219.016.dd83

Способ определения соотношения фаз в стали

Изобретение относится к области металловедения, в частности к способам определения соотношения фаз в феррито-перлитных сталях. Сущность: подготавливают гладкий участок поверхности исследуемого образца стали. В качестве рекомендуемого усилия на индентор принимают усилие, полученное в результате...
Тип: Изобретение
Номер охранного документа: 0002467307
Дата охранного документа: 20.11.2012
29.03.2019
№219.016.f1cb

Способ определения наличия и площади эквивалентного повреждения в изоляционном покрытии подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при выявлении повреждений изоляционного покрытия труб. Технический результат: повышение точности определения площади сквозного повреждения в изоляции трубопровода, упрощение технической реализации при уменьшении затрат...
Тип: Изобретение
Номер охранного документа: 0002315329
Дата охранного документа: 20.01.2008
29.03.2019
№219.016.f435

Способ предотвращения развития дефектов стенок трубопроводов

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте трубопроводов. На участке трубопровода снижают до минимально возможной величины изгибные напряжения, которые определяют методами неразрушающего контроля (НК). Снижение кольцевых напряжений выполняют...
Тип: Изобретение
Номер охранного документа: 0002325582
Дата охранного документа: 27.05.2008
29.03.2019
№219.016.f43c

Способ ремонта провисающих и размытых участков подземного трубопровода

Изобретение относится к строительству трубопроводного транспорта и используется для ремонта магистральных трубопроводов подземной прокладки на провисающих и размытых участках в руслах малых водных преград. Разрабатывают концы участка трубопровода, выполняют дефектоскопию расположенных на концах...
Тип: Изобретение
Номер охранного документа: 0002325579
Дата охранного документа: 27.05.2008
29.03.2019
№219.016.f43e

Способ выявления участков трубопроводов, подверженных коррозионному растрескиванию под напряжением

Изобретение относится к трубопроводному транспорту и может быть использовано при эксплуатации подземных трубопроводов. С учетом изменения удельного электрического сопротивления грунта устанавливают различия в градиентах защитного потенциала. Определяют периоды высокого и низкого уровня...
Тип: Изобретение
Номер охранного документа: 0002325583
Дата охранного документа: 27.05.2008
10.04.2019
№219.016.ff28

Кассета для дистанционного минирования

Изобретение относится к боеприпасам, а именно к кассетам для дистанционного минирования зоны кумулятивными противотанковыми минами. Кассета содержит цилиндрический стакан, крышку, поршень с вышибным зарядом, электрокапсюль и закрепленные неподвижно в один ряд внутри цилиндрического стакана...
Тип: Изобретение
Номер охранного документа: 0002270975
Дата охранного документа: 27.02.2006
29.04.2019
№219.017.4649

Способ оценки технического состояния изоляционного покрытия подземного трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при назначении участков трубопроводов к капитальному ремонту изоляции. В способе выбирают расположенный между точками дренажа двух соседних станций катодной защиты (далее - СКЗ) участок трубопровода, на котором...
Тип: Изобретение
Номер охранного документа: 0002469238
Дата охранного документа: 10.12.2012
18.05.2019
№219.017.5a3b

Сигнальная мина нелетального действия

Изобретение относится к боеприпасам нелетального действия, в частности сигнальным минам. Мина содержит наружный корпус, внутри которого размещены боевой элемент, устройство для его выброса, основание, на одной стороне которого имеются центральный выступ с наружной кольцевой канавкой и...
Тип: Изобретение
Номер охранного документа: 0002401980
Дата охранного документа: 20.10.2010
29.05.2019
№219.017.6481

Способ предотвращения развития дефектов стенок трубопроводов

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте трубопроводов с трещиноподобными дефектами. Определяют местоположение и характер дефекта, вскрывают трубопровод, удаляют изоляционное покрытие и зачищают дефект. Уменьшают давление в трубопроводе,...
Тип: Изобретение
Номер охранного документа: 0002295088
Дата охранного документа: 10.03.2007
+ добавить свой РИД