×
29.05.2019
219.017.6493

Результат интеллектуальной деятельности: СПОСОБ НАВЕДЕНИЯ УПРАВЛЯЕМОЙ РАКЕТЫ И СИСТЕМА НАВЕДЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретения относятся к области разработки систем управления ракетами и могут быть использованы в противотанковых ракетных комплексах. Технический результат - повышение качества и надежности процесса наведения управляемой ракеты без изменения конструкции самой ракеты, осуществление селекции источника полезного сигнала среди возможных оптических помех, упрощение конструкции аппаратуры управления, повышение соотношения сигнал/шум и, как следствие, повышение помехозащищенности всей системы управления. Способ наведения управляемой ракеты включает старт управляемой ракеты с бортовым источником излучения, прием и фокусировку на фотоприемнике излучения фоноцелевой обстановки с источником полезного сигнала, выделение координат источника полезного сигнала, определение координат управляемой ракеты и формирование команд управления для передачи на ракету. Перед стартом управляемой ракеты в качестве программных значений запоминают изменение параметров, характеризующих отличительную особенность движения бортового источника излучения, определяют максимальное и минимальное значения параметров, характеризующих отличительную особенность движения бортового источника излучения. В процессе выделения координат бортового источника излучения определяют и запоминают параметры движения всех источников излучения, сравнивают текущие параметры движения каждого из источников излучения с программными значениями, а формирование команд управления осуществляют в соответствии с координатами изображения того источника излучения, параметры движения которого соответствуют программным и находятся между максимальным и минимальным значениями. В систему наведения управляемой ракеты, содержащую объектив, фотоприемник излучения и последовательно соединенные блок выделения координат и блок формирования команд, дополнительно введены блок задания параметров движения, последовательно соединенные блок памяти, блок определения параметров движения и блок сравнения. Причем вход объектива соединен с входом фотоприемника, первый выход которого соединен с блоком выделения координат, а второй выход соединен с блоком памяти, выход блока сравнения соединен со вторым входом блока выделения координат, а блок задания параметров движения подключен ко второму входу блока сравнения. 2 н. и 4 з.п.ф-лы, 2 ил.

Предлагаемые способ наведения управляемой ракеты и система наведения управляемой ракеты относятся к области разработки систем управления ракетами и могут быть использованы в противотанковых ракетных комплексах (ПТРК).

Наиболее близким к предлагаемому является способ наведения противотанковой ракеты, реализованный в ПТРК 9К111 "Фагот" и взятый в качестве прототипа [1, Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва - 1975 г., стр.11-13], включающий запуск противотанковой ракеты с бортовым источником излучения, прохождение светового потока от источника излучения через объектив и оптический растр, модуляцию светового потока с помощью оптического растра, прием модулированного светового потока от источника излучения фотоприемником со сплошной фоточувствительной поверхностью, выделение координат бортового источника излучения, определение координат противотанковой ракеты и формирование команд управления противотанковой ракетой.

Наиболее близкой к предлагаемой является система наведения противотанковой ракеты, реализующая известный способ наведения противотанковой ракеты и применяемая в переносном ПТРК 9К111 "Фагот" [1, Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва - 1975 г., стр.11-13]. Эта система наведения содержит последовательно соединенные объектив, принимающий сигнал от бортового источника излучения, оптический растр, фотоприемник излучения, усилитель фототока, блок выделения координат и блок формирования команд, а также генератор опорных напряжений, подключенный между оптическим растром и блоком выделения координат.

Функциональная схема системы наведения противотанковой ракеты, реализующей известный способ наведения противотанковой ракеты, приведена на фиг.1.

Система наведения противотанковой ракеты работает следующим образом. Входным воздействием для нее является угловое отклонение бортового источника излучения противотанковой ракеты от линии прицеливания. Объектив (1), фокусирует излучение фоноцелевой обстановки (ФЦО) с бортовым источником излучения на оптическом растре (2), который имеет прозрачные и непрозрачные сектора, расположенные радиально, и совершает плоскопараллельное перемещение (сканирование), что обеспечивает частотную модуляцию и пространственную селекцию светового потока бортового источника излучения. Частотно-модулированный световой поток воспринимается фотоприемником излучения (3) и преобразуется в соответствующие электрические сигналы. Частотно-модулированный сигнал с фотоприемника поступает в усилитель фототока (4), где усиливается до необходимого значения. Выходной сигнал с усилителя фототока содержит информацию об угловых отклонениях источника излучения ракеты от линии прицеливания, которая поступает в блок выделения координат (5). После преобразования сигнала усилителя фототока блок выделения координат вырабатывает напряжения, соответствующие уже линейным отклонениям ракеты от линии прицеливания. В качестве опорных напряжений при фазовом детектировании используются сигналы с генератора опорных напряжений (7). Напряжения, пропорциональные отклонениям ракеты от линии прицеливания по курсу и тангажу, с выхода блока выделения координат поступают на блок формирования команд (6), где преобразуются в сигналы управления, предназначенные для передачи по ПЛС на ракету.

Современные условия развития ПТРК поставили задачу решения ряда принципиальных технических особенностей, свойственных данным способу наведения противотанковой ракеты и системе наведения для его реализации. Так система наведения противотанковой ракетой устойчиво работает только при наличии в поле зрения объектива одного единственного источника полезного сигнала - бортового источника излучения противотанковой ракеты. Но при современных условиях ведения боевых действий фоноцелевая обстановка (ФЦО) может содержать высокоинтенсивные световые помехи - источники оптических помех (ОП), количество которых может быть произвольным. При попадании излучения такой световой помехи совместно с полезным источником излучения в объектив возможен срыв управления ракетой, несмотря на частотную модуляцию и пространственную селекцию светового потока бортового источника излучения оптическим растром. Это обусловлено тем, что фотоприемник будет вырабатывать сигнал, соответствующий среднегеометрическому положению всех источников излучения, находящихся в поле зрения объектива, а это приведет к существенному снижению точности выделения координат бортового источника излучения. Кроме того, для осуществления модуляции светового потока необходимо соблюдать как высокие технологические требования по установке и юстировке оптического растра, так и обеспечивать высокие точностные характеристики при стабилизации частоты опорного напряжения. К тому же, фотоприемник может вносить высокие шумовые составляющие в результирующий сигнал на его выходе (особенно при высоких температурах эксплуатации), что существенно уменьшает соотношение сигнал/шум в системе управления.

Задачей предлагаемого изобретения является разработка такого способа наведения управляемой ракеты и системы наведения управляемой ракеты, которые позволили бы повысить качество и надежность процесса наведения управляемой ракеты без изменения конструкции самой ракеты, осуществлять селекцию источника полезного сигнала среди возможных оптических помех, существенно упростить конструкцию аппаратуры управления, повысить соотношение сигнал/шум и, как следствие, повысить помехозащищенность всей системы управления.

Поставленная задача решается тем, что в способе наведения управляемой ракеты, включающем старт управляемой ракеты с бортовым источником излучения, прием и фокусировку на фотоприемнике излучения фоноцелевой обстановки с источником полезного сигнала, выделение координат источника полезного сигнала, определение координат управляемой ракеты и формирование команд управления для передачи на ракету, перед стартом управляемой ракеты в качестве программных значений запоминают изменение параметров, характеризующих отличительную особенность движения бортового источника излучения, определяют максимальное и минимальное значения параметров, характеризующих отличительную особенность движения бортового источника излучения, в процессе выделения координат бортового источника излучения определяют и запоминают параметры движения всех источников излучения, сравнивают текущие параметры движения каждого из источников излучения с программными значениями, а формирование команд управления осуществляют в соответствии с координатами изображения того источника излучения, параметры движения которого соответствуют программным и находятся между максимальным и минимальным значениями.

В частном случае, в качестве параметров, характеризующих отличительную особенность движения бортового источника излучения, используют изменение длины вектора перемещения, угол поворота вектора перемещения и направление движения бортового источника излучения.

В качестве параметров, характеризующих отличительную особенность движения бортового источника излучения, используют изменение радиуса вращения относительно продольной оси управляемой ракеты, изменение частоты вращения и направление движения бортового источника излучения.

В качестве параметров, характеризующих отличительную особенность движения бортового источника излучения, используют изменение линейной скорости движения и направление движения бортового источника излучения.

В качестве параметров, характеризующих отличительную особенность движения бортового источника излучения, используют изменение составляющих координат центра масс бортового источника излучения, а также изменение координат центра масс ракеты.

Поставленная задача решается также тем, что в систему наведения управляемой ракеты, содержащую объектив, фотоприемник излучения и последовательно соединенные блок выделения координат и блок формирования команд, дополнительно введены блок задания параметров движения, последовательно соединенные блок памяти, блок определения параметров движения и блок сравнения, причем вход объектива соединен с входом фотоприемника, первый выход которого соединен с блоком выделения координат, а второй выход соединен с блоком памяти, выход блока сравнения соединен со вторым входом блока выделения координат, а блок задания параметров движения подключен ко второму входу блока сравнения.

Функциональная схема системы наведения управляемой ракеты приведена на фиг.2.

Система наведения управляемой ракеты работает следующим образом. Излучение фоноцелевой обстановки (ФЦО) с бортовым источником излучения объектив (1) фокусирует непосредственно на фотоприемнике излучения (3), выполненном на основе фоточувствительного прибора матричного типа, на чувствительных ячейках которого образуются изображения, соответствующие всем источникам излучения, которые в данный момент времени присутствуют в поле зрения объектива. Блок памяти (8) осуществляет накопление информации с нескольких видеокадров изображения для анализа местоположения всех источников излучения. После этого в блоке определения параметров движения (9) для каждого из источника излучения, присутствующего в поле зрения объектива, рассчитываются параметры его движения (перемещения), которые отличают его от остальных источников излучения.

В качестве отличительной особенности движения бортового источника излучения и управляемой ракеты могут выступать как отдельные параметры, так и их комбинации, например, изменение длины вектора перемещения, угол поворота вектора перемещения и направление движения бортового источника излучения.

Для вращающихся по крену управляемых ракет, у которых источник излучения зафиксирован на определенном расстоянии от продольной оси ракеты, в качестве отличительной особенности движения бортового источника излучения можно использовать изменение радиуса вращения относительно продольной оси управляемой ракеты, изменение частоты вращения и направление движения бортового источника излучения.

В качестве отличительной особенности движения бортового источника излучения можно использовать изменение линейной скорости движения и направление движения бортового источника излучения.

В качестве отличительной особенности движения бортового источника излучения можно использовать изменение составляющих координат центра масс бортового источника излучения, а также изменение координат центра масс ракеты.

После определения параметров движения источника излучения производится их сравнение с программными значениями, заложенными в блоке задания параметров движения (11). Данное сравнение производится в блоке сравнения (10), который осуществляет выделение из всего числа источников излучения бортовой источник полезного сигнала управляемой ракеты. После этого блок выделения координат (5) осуществляет преобразование информации об угловых отклонениях бортового источника излучения управляемой ракеты от линии прицеливания в напряжения, соответствующие линейным отклонениям ракеты от линии прицеливания. Напряжения, пропорциональные отклонениям ракеты от линии прицеливания по курсу и тангажу, с выхода блока выделения координат поступают на блок формирования команд (6), где преобразуются в сигналы управления, предназначенные для передачи на ракету.

В предлагаемой системе наведения управляемой ракеты объектив, блок выделения координат и блок формирования команд могут быть выполнены как в прототипе. Фотоприемник излучения может быть выполнен на основе высокочастотной ПЗС-матрицы [2]. Блок памяти, блок определения параметров движения, блок сравнения и блок задания параметров движения могут быть выполнены на основе сигнальных микропроцессоров [3] и программируемых логических интегральных схем [4].

Предлагаемые способ наведения управляемой ракеты и система наведения управляемой ракеты по сравнению с прототипами позволяют достичь:

- упрощения конструкции системы наведения, уменьшения ее габаритно-массовых характеристик;

- существенного повышения надежности и помехозащищенности системы наведения;

- повышения точности наведения управляемой ракеты без изменения конструкции самой ракеты.

Обосновать работу системы наведения управляемой ракеты можно следующим образом. Исходными данными является последовательность видеокадров с изображением источника излучения, по которым необходимо осуществить построение траектории источника излучения.

Определение траектории бортового источника излучения управляемой ракеты по последовательности видеоизображений на фоне других источников излучения может быть решена следующим образом.

В каждом видеокадре осуществляется расчет координат смещения геометрического центра изображения каждого источника излучения относительно оптической оси пеленгатора:

где Yc - координата оптической оси пеленгатора по вертикали;

Хc - координата оптической оси пеленгатора по горизонтали;

N - количество ячеек фотоприемника в изображении источника;

nyi, nxi - координаты ячеек фотоприемника в изображении источника.

Определение смещения энергетического центра изображения источника излучения, соответствующего энергетическому центру данного изображения с учетом уровней сигналов si с фотоприемника, а также определение смещения этой ячейки относительно координаты оптической оси можно осуществить по формулам:

где si - уровни выходных сигналов с ячеек фотоприемника в изображении источника.

Использование зависимости (1) целесообразно, как правило, на участке управления, когда область засвеченного пространства от бортового источника излучения имеет незначительные размеры, либо накладываются ограничения на допустимые вычислительные ресурсы оптического пеленгатора при слабом требовании по точности выделения координат источника излучения.

Линейные координаты источника полезного сигнала относительно оптической оси пеленгатора определяются из (1) или соответственно (2):

где D - текущая дальность до источника полезного сигнала;

f - фокусное расстояние пеленгатора;

δf - размер ячейки фотоприемника излучения.

Координаты источника излучения соответствуют дискретным моментам времени, пусть n - номер текущего видеокадра. Траектория состоит из множества векторов перемещений источника, причем каждый вектор имеет следующие параметры:

R[n] - длина вектора перемещения;

ϕ[n] - угол поворота вектора перемещения относительно предыдущего вектора.

Расчет параметров относительного перемещения источника излучения осуществляется по формулам (4)-(5).

Определив истинные значения радиуса-вектора и угла поворота в каждый момент времени и сравнив их с рассчитанными программными значениями, можно найти изображение источника излучения, которое по своей вращательной составляющей движения соответствует бортовому источнику излучения и на основе его координат осуществлять формирование команд управления для передачи на ракету.

Селекция бортового источника на фоне помех осуществляется в этом случае по следующим условиям:

где Rmax[n]=Ro[n]+ΔR[n], Rmin[n]=Ro[n]-ΔR[n] - максимальное и минимальное значение вектора перемещения источника,

Ro[n] - программное значение вектора перемещения,

ΔR - величина допустимого отклонения от программного значения вектора перемещения,

ϕmax[n]=ϕo[n]+Δϕ[n], ϕmin[n]=ϕo[n]-Δϕ[n] - максимальное и минимальное значение угла поворота вектора перемещения,

ϕo[n] - программное значение угла поворота вектора перемещения,

Δϕ[n] - величина допустимого отклонения от программного значения угла поворота вектора перемещения.

Анализ формул (6)...(7) показывает, что в рассматриваемой системе осуществляется селекция источника полезного сигнала среди возможных оптических помех по признакам, характеризующим движение источника излучения относительно вращения ракеты. Это обеспечивает повышение помехоустойчивости системы управления.

Селекция бортового источника излучения по направлению осуществляется так же согласно формуле (7). Значение угла ϕ[n] будет характеризовать направление вращения ракеты.

Вращательное движение источника может характеризоваться следующими параметрами:

B[n] - радиус вращения;

ω[n] - частота вращения.

Расчет В[n] и ω[n], как правило, может осуществляться при большом количестве видеокадров изображений источника излучения с помощью преобразования Фурье.

Селекция бортового источника на фоне помех по характеристикам вращательного движения может осуществляться по следующим условиям:

где Bmax[n]=Bo[n]+ΔB[n], Bmin[n]=Bo[n]-ΔB[n] - максимальное и минимальное значение радиуса вращения,

Bo[n] - программное значение радиуса вращения,

ΔB[n] - величина допустимого отклонения от программного значения радиуса вращения,

ωmax[n]=ωo[n]+Δω[n], ωmin[n]=ωo[n]-Δω[n] - максимальное и минимальное значение частоты вращения,

ωo[n] - программное значение частоты вращения,

Δω[n] - величина допустимого отклонения от программного значения частоты вращения.

Селекция бортового источника излучения по направлению осуществляется так же согласно формуле (7). Значение угла ω[n] будет характеризовать направление вращения ракеты.

Анализ формул (7)...(9) показывает, что в рассматриваемой системе осуществляется селекция источника полезного сигнала среди возможных оптических помех по признакам, характеризующим движение источника излучения относительно вращения ракеты. Это обеспечивает повышение помехоустойчивости системы управления.

Скорость бортового источника излучения в картинной плоскости можно определить как:

где V[n] - скорость бортового источника излучения в картинной плоскости;

- составляющие скорости движения бортового источника излучения от вращения ракеты и перемещения ее центра масс в вертикальной плоскости;

- составляющие скорости движения бортового источника излучения от вращения ракеты и перемещения ее центра масс в горизонтальной плоскости.

Линейную скорость движения бортового источника можно записать через угловую скорость движения:

где ωцм - угловая скорость движения центра масс ракеты;

ωвр - угловая скорость движения бортового источника излучения ракеты;

rцм - линейное отклонение центра масс ракеты;

rвр - отклонение бортового источника излучения относительно продольной оси ракеты - радиус вращения.

Как правило, в линейной скорости движения бортового источника излучения составляющая от вращения превосходит составляющую от движения центра масс и является известной полетной характеристикой управляемой ракеты. По этому признаку можно осуществлять селекцию источника вращения.

Вычисление линейной скорости движения центров изображений источников излучения осуществляется по следующей зависимости:

где Vx[n]=(ΔX[n]-ΔХ[n-1])/Td - вертикальная составляющая скорости,

Vy[n]=(ΔY[n]-ΔY[n-1])/Td - горизонтальная составляющая скорости,

Td - период следования видеокадров.

Выделение бортового источника излучения осуществляется по следующему условию:

где Vmin[n], Vmax[n] - минимальная и максимальная линейные скорости движения бортового источника излучения:

Vmax[n]=ωmax[n]В[n], Vmin[n]=ωmin[n]B[n],

ωmin[n], ωmax[n] - минимальная и максимальная угловые скорости движения ракеты,

В[n] - величина смещения бортового источника относительно оси вращения ракеты.

Дополнительным признаком выделения бортового источника излучения является направление вращения. При этом должна выполняться определенная смена знаков составляющих скорости. Так при вращении по часовой стрелке происходит следующая смена знаков:

СкоростьЗнак скорости
Vx--++
Vy+--+

Анализ формул (10)-(13) показывает, что в рассматриваемой системе обеспечивается селекция смещенного относительно оси вращения ракеты бортового источника излучения по скорости и направлению вращения ракеты, что обеспечивает повышение помехоустойчивости.

Следовательно, использование новых элементов, соединенных в соответствии с фиг.2 в предлагаемой системе наведения управляемой ракеты, выгодно отличает предлагаемое техническое решение от прототипа.

Источники литературы

1. Пусковая установка 9П135. Техническое описание. Ордена Трудового Красного Знамени Военное издательство Министерства обороны СССР, Москва - 1975 г., стр.11-13 - прототип.

2. Приборы с зарядовой связью / Под ред. М.Хоувза и Д.Моргана: Пер. с англ. - М.: Энергоиздат, 1981. - 376 с., ил.

3. Руководство пользователя по сигнальным микропроцессорам ADSP-2100 / Пер. с англ. О.В.Луневой; Под ред. А.Д.Викторова; Санкт-Петербургский государственный электротехнический университет. - Санкт-Петербург, 1997. - 520 с.

4. В.Б.Стешенко. ПЛИС фирмы "ALTERA": Проектирование устройств обработки сигналов. / М.: "Додека", 2000 г.

1.Способнаведенияуправляемойракеты,включающийстартуправляемойракетысбортовымисточникомизлучения,приемифокусировкунафотоприемникеизлученияфоноцелевойобстановкисисточникомполезногосигнала,выделениекоординатисточникаполезногосигнала,определениекоординатуправляемойракетыиформированиекомандуправлениядляпередачинаракету,отличающийсятем,чтопередстартомуправляемойракетывкачествепрограммныхзначенийзапоминаютизменениепараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,определяютмаксимальноеиминимальноезначенияпараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,впроцессевыделениякоординатбортовогоисточникаизлученияопределяютизапоминаютпараметрыдвижениявсехисточниковизлучения,сравниваюттекущиепараметрыдвижениякаждогоизисточниковизлученияспрограммнымизначениями,аформированиекомандуправленияосуществляютвсоответствиискоординатамиизображениятогоисточникаизлучения,параметрыдвижениякоторогосоответствуютпрограммныминаходятсямеждумаксимальнымиминимальнымзначениями.12.Способпоп.1,отличающийсятем,чтовкачествепараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,используютизменениедлинывектораперемещения,уголповоротавектораперемещенияинаправлениедвижениябортовогоисточникаизлучения.23.Способпоп.1,отличающийсятем,чтовкачествепараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,используютизменениерадиусавращенияотносительнопродольнойосиуправляемойракеты,изменениечастотывращенияинаправлениедвижениябортовогоисточникаизлучения.34.Способпоп.1,отличающийсятем,чтовкачествепараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,используютизменениелинейнойскоростидвиженияинаправлениедвижениябортовогоисточникаизлучения.45.Способпоп.1,отличающийсятем,чтовкачествепараметров,характеризующихотличительнуюособенностьдвижениябортовогоисточникаизлучения,используютизменениесоставляющихкоординатцентрамассбортовогоисточникаизлучения,атакжеизменениекоординатцентрамассракеты.56.Системанаведенияуправляемойракеты,содержащаяобъектив,фотоприемникизлученияипоследовательносоединенныеблоквыделениякоординатиблокформированиякоманд,отличающаясятем,чтовнеедополнительновведеныблокзаданияпараметровдвижения,последовательносоединенныеблокпамяти,блокопределенияпараметровдвиженияиблоксравнения,причемвходобъективасоединенсвходомфотоприемника,первыйвыходкоторогосоединенсблокомвыделениякоординат,авторойвыходсоединенсблокомпамяти,выходблокасравнениясоединенсовторымвходомблокавыделениякоординат,аблокзаданияпараметровдвиженияподключенковторомувходублокасравнения.6
Источник поступления информации: Роспатент

Показаны записи 1-10 из 438.
10.01.2013
№216.012.19c9

Ударно-спусковой механизм автоматического стрелкового оружия

Изобретение относится к области оружейной техники. Ударно-спусковой механизм содержит курок с боевым взводом и взводом автоспуска, боевую пружину, подпружиненное шептало, кинематически связанное со спусковым крючком, шептало одиночной стрельбы и подпружиненный автоспуск с шепталом автоспуска....
Тип: Изобретение
Номер охранного документа: 0002472093
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19cd

Действующая модель миниатюрного полуавтоматического пистолета

Изобретение относится к области действующих моделей миниатюрного оружия, преимущественно образцов оружия, действие автоматики которого основано на отдаче ствола с коротким ходом. Действующая модель миниатюрного полуавтоматического пистолета содержит корпус, в котором размещены ствол, затвор,...
Тип: Изобретение
Номер охранного документа: 0002472097
Дата охранного документа: 10.01.2013
27.03.2013
№216.012.315f

Автоматическое стрелковое оружие

Изобретение относится к оружейной технике и может быть использовано при разработке автоматического стрелкового оружия многофункционального назначения. Автоматическое стрелковое оружие содержит ствольную коробку с закрепленным в ней стволом, затворную раму с затвором и возвратной пружиной,...
Тип: Изобретение
Номер охранного документа: 0002478177
Дата охранного документа: 27.03.2013
20.10.2013
№216.012.76d4

Прицельное приспособление гранатомета

Изобретение относится к оружейной технике, а именно к прицельному приспособлению гранатомета, используемому, в основном, в качестве дополнительных к основному оптическому прицелу. Прицельное устройство гранатомета содержит целик с прорезью или диоптром и мушку, установленную в основании мушки,...
Тип: Изобретение
Номер охранного документа: 0002496080
Дата охранного документа: 20.10.2013
20.02.2019
№219.016.c4a3

Способ юстировки излучателя лазерной системы прицел-прибора наведения

Изобретение относится к области ракетной техники, в частности к управляемым ракетным комплексам. Техническим результатом изобретения является повышение выходной мощности лазерного луча прицел-прибора наведения, уменьшение его веса и габаритов, снижение трудоемкости при сборке и юстировке,...
Тип: Изобретение
Номер охранного документа: 02148234
Дата охранного документа: 27.04.2000
20.02.2019
№219.016.c4ba

Способ проверки качества функционирования рулевых приводов и автопилотов управляемых снарядов и стенд для его осуществления

Изобретение относится к испытаниям деталей машин. Стенд содержит генератор импульсных сигналов, пульт управления и контроля, регистрирующий блок, источники электро- и пневмопитания, основание для закрепления проверяемого блока воздушно-динамического рулевого привода (автопилота) с раскрытыми...
Тип: Изобретение
Номер охранного документа: 02182702
Дата охранного документа: 20.05.2002
01.03.2019
№219.016.caee

Способ наведения оптического прицела на цель

Изобретение относится к вооружению и может быть использовано в войсках противовоздушной обороны. Технический результат - повышение точности наведения оптического прицела (ОП) на цель и уменьшение зависимости эффективности боевой машины от уровня профессиональной подготовленности наводчика....
Тип: Изобретение
Номер охранного документа: 02217681
Дата охранного документа: 27.11.2003
08.03.2019
№219.016.d5c1

Орудийная установка

Изобретение относится к технике вооружения, в частности к башенным орудийным установкам. Оно позволяет повысить точность стрельбы за счет уменьшения влияния вибраций ствола на баллистику снаряда в момент его вылета из канала ствола. Орудийная установка содержит автоматическую пушку, размещенную...
Тип: Изобретение
Номер охранного документа: 02165575
Дата охранного документа: 20.04.2001
11.03.2019
№219.016.d69b

Боевая машина

Изобретение относится к бронетанковой технике, а именно к конструкциям боевых машин пехоты и десанта. Сущность изобретения заключается в том, что боевая машина содержит гусеничный носитель и боевое отделение, установленное на переходном кольце, которое закреплено на подбашенном листе...
Тип: Изобретение
Номер охранного документа: 0002288427
Дата охранного документа: 27.11.2006
11.03.2019
№219.016.d69d

Складывающееся крыло ракеты

Изобретение относится к области вооружения. Складывающееся крыло ракеты содержит лопасть, корневая часть которой совместно с шарнирно соединенными с ней вкладышами размещена в выемке жестко закрепленного на корпусе ракеты основания, устройство раскрытия в виде взаимодействующей с вкладышами...
Тип: Изобретение
Номер охранного документа: 0002288434
Дата охранного документа: 27.11.2006
Показаны записи 1-10 из 102.
27.01.2013
№216.012.20ab

Способ формирования команды управления одноканальной вращающейся по углу крена ракетой и устройство для его осуществления (варианты)

Предлагаемая группа изобретений относится к области ракетного вооружения. Способ формирования команды управления одноканальной вращающейся по углу крена ракетой включает формирование программно-временного сигнала, формирование сигнала крена ракеты, модуляцию им программно-временного сигнала и...
Тип: Изобретение
Номер охранного документа: 0002473864
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20ae

Способ наведения ракеты, управляемой лучом радиолокационной станции, и устройство для его осуществления

Группа изобретений относится к системам управляемого оружия и ракетной артиллерийской технике с головками самонаведения (ГСН) при радиокомандном выводе управляемых ракет или снарядов в зону самонаведения. Способ наведения ракеты, управляемой лучом радиолокационной станции (РЛС), включает...
Тип: Изобретение
Номер охранного документа: 0002473867
Дата охранного документа: 27.01.2013
27.02.2013
№216.012.2c71

Способ сопровождения объекта и способ формирования сигнала управления положением луча приемно-передающего антенного устройства системы сопровождения объекта

Группа изобретений предназначена для использования в системах автоматического сопровождения объектов. Достигаемый технический результат - повышение точности сопровождения и измерения координат объекта. В способе сопровождения объекта новым является то, что для оценки параметров движения объекта...
Тип: Изобретение
Номер охранного документа: 0002476904
Дата охранного документа: 27.02.2013
10.04.2013
№216.012.3436

Электронный блок двухканальной лазерной полуактивной головки самонаведения

Изобретение относится к технике управления вращающимися по углу крена беспилотными летательными аппаратами и может быть использовано в комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение методом пропорциональной навигации. Электронный блок (ЭБ) включает...
Тип: Изобретение
Номер охранного документа: 0002478909
Дата охранного документа: 10.04.2013
27.09.2013
№216.012.700c

Способ определения угла крена ракеты, регулярно вращающейся по углу крена, и устройство для его осуществления

Изобретение относится к области вооружения, а именно к способу и системам управления ракетами, вращающимися по углу крена, и может быть использовано в системах управления, формирующих на борту команды управления. Технический результат - повышение точности. Для этого до старта ракеты измеряют...
Тип: Изобретение
Номер охранного документа: 0002494335
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7401

Способ стрельбы управляемой ракетой

Способ относится к управляемому вооружению. В способе осуществляется топографическая привязка целеуказателя и пусковой установки к местности, цель обнаруживается целеуказателем, координаты цели определяются и передаются в пульт огневой позиции. Устанавливается единое время в пульте разведчика и...
Тип: Изобретение
Номер охранного документа: 0002495354
Дата охранного документа: 10.10.2013
10.11.2013
№216.012.7fa0

Интегрированная автоматическая система сопровождения

Изобретение предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением и уничтожения маневрирующих подвижных целей. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002498345
Дата охранного документа: 10.11.2013
10.02.2014
№216.012.9fcc

Светосильный объектив ик-области

Объектив может быть использован для работы в ИК-диапазоне длин волн в тепловизионных приборах. Объектив содержит четыре компонента: первый - одиночный положительный мениск, обращенный вогнутостью к изображению, второй - одиночный мениск, обращенный выпуклостью к изображению, третий - одиночный...
Тип: Изобретение
Номер охранного документа: 0002506616
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b346

Способ формирования сигналов управления вращающейся вокруг продольной оси двухканальной ракетой

Изобретение относится к ракетной технике и может быть использовано в системах наведения управляемых ракет. Технический результат - повышение точности наведения ракеты за счет устранения фазовой связи ее каналов управления. Для этого сигналы рассогласования между командами управления ракетой в...
Тип: Изобретение
Номер охранного документа: 0002511610
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b4f3

Управляемая пуля

Изобретение относится к области ракетной техники. Управляемая пуля выполнена по двухступенчатой бикалиберной схеме и содержит боевую часть, стартовый двигатель, блок управления и газодинамическое устройство управления. Она снабжена переходным обтекателем, в котором вокруг хвостовой части...
Тип: Изобретение
Номер охранного документа: 0002512047
Дата охранного документа: 10.04.2014
+ добавить свой РИД