×
29.05.2019
219.017.6385

Результат интеллектуальной деятельности: Способ криоконсервации биологических образцов под давлением и устройство для его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение относится к области криоконсервации для обеспечения длительного хранения биологических образцов. Способ криоконсервации биологического образеца включает насыщение раствором криопротектора, размещение образца во внутреннем объеме камеры высокого давления, проведение витрификации образца в камере при повышении гидравлического давления в объеме камеры до уровня 500-2100 атм. в зависимости от типа биологического образца. Далее переносят верифицированный образец на хранение. При этом на первом этапе охлаждения образца проводят наращивание давления со скоростью не более 50 атм/с, наращивание давления начинают при температуре в диапазоне от 0°С до -50°С и заканчивают формирование высокого давления в диапазоне температур от -35 до -100°С. Второй этап охлаждения образца до температуры стеклования поводят при высоком давлении в изобарическом режиме. При достижении температуры биологического образца на 1-10°С ниже температуры стеклования переходят к третьему этапу охлаждения в изохорическом режиме до достижения температуры хранения образца. После окончания хранения биологического образца в камере восстанавливают высокое давление и проводят первый этап разогрева биологического образца от температуры хранения до температуры стеклования в изохорическом режиме. На втором этапе разогрева от температуры стеклования до диапазона температур от - 100 до - 35°С нагрев проводят в изобарическом режиме, поддерживая сформированное высокое давление на образец. На третьем этапе разогрева в диапазоне температур от -50 до 0°С плавно снижают давление до нормобарического состояния со скоростью не более 50 атм/с. Предлагаемый способ криоконсервации биологического образца позволяет повысить жизнеспособность биологического образца за счет устранения растрескивания образца в процессе витрификации. 2 н. и 16 з.п. ф-лы, 3 ил., 2 табл.

Область техники

Изобретение относится к биологии, медицине, сельскому хозяйству, пищевой промышленности и биотехнологии и может быть применено для длительного хранения биологических материалов, таких как клетки, ткани, органы.

Уровень техники

Длительное хранение жизнеспособного биологического материала является необходимым элементом многих технологий в области биологии, медицины, сельского хозяйства. Наиболее длительные сроки хранения биообъектов обеспечивает криоконсервация - глубокое замораживания биологических объектов с сохранением их жизнеспособности. Сохранение органов, тканей, клеток или биологических молекул требует, чтобы химические реакции, в которых они участвуют, замедлялись или останавливались во время сохранения, а затем

восстанавливались. Химические реакции экспоненциально замедляются при снижении температуры в соответствии с уравнением С. Аррениуса. Сохранение считается успешным, когда биологический материал функционирует нормально при восстановлении до физиологических температур. Однако температурный отход от физиологических условий до субфизиологических условий и обратно включает в себя большое разнообразие механизмов повреждения. Преодоление этих способов повреждения является целью решения основных проблем криоконсервации.

Различают два способа криоконсервации - медленная (или классическая) криоконсервация и витрификация. Медленная криоконсервация предполагает, что при замораживании биообъектов в растворе и межклеточном пространстве образуются кристаллы льда. Оптимальные режимы замораживания-оттаивания обеспечивают образование кристаллов льда исключительно во внеклеточном пространстве, без острых граней, без сдавливания клеток, что обеспечивает отсутствие повреждений биологических структур клеток. Витрификация предусматривает замораживание образцов без образования кристаллов льда, с отвердеванием растворов в аморфном, стеклообразном состоянии. Считается, что крупные объемные фрагменты тканей и органы (более 1 см 3) можно успешно криоконсервировать только методом витрификации.

Известно применение способов витрификации - быстрого охлаждения образцов в нормобарических условиях, но такие способы могут работать только с малыми биологическими объектами в малых объемах из-за сильного растрескивания образцов [1].

Повысить жизнеспособность биологических объектов сложная задача. Из уровня техники известно несколько направлений повышения эффективности витрификации. К ним относится подбор криоконсервантов [2], применение больших скоростей снижения/повышения температуры образцов [3].

Для повышения жизнеспособности биологических образцов применяют высокие давления, повышающие вязкость и сохранность образцов. Известны технические решения, которые основаны на воздействии высокого давления на биологический образец до или вовремя процедуры витрификации. В патенте США №US 8415093 описан способ улучшения выживаемости после оттаивания криоконсервированного биологического образца. Способ включает приложение гидростатического давления к указанному биологическому материалу, удерживание указанного биологического материала при гидростатическом давлении в течение заданного периода времени, снятие гидростатического давления с биологического материала, замораживание указанного биологического материала с использованием любого применимого к нему протокола [4].

Известен патент США №US 4559298, в котором описан способ улучшенной криоконсервации биологических материалов. Биологический материал охлаждают до стеклообразного состояния под давлением в присутствии водного раствора для витрификации, содержащего криоконсервирующие агенты. Улучшение включает: (а) применение достаточного количества проникающих криоконсервантов с эквивалентным количеством непроникающих криоконсервантов для уменьшения повреждения биологического материала при криоконсервации, (б) обработку биологического материала раствором, криоконсервантов, со скоростью и продолжительностью до остекловывания, (в) воздействие давления, достаточного для остекловывания биологического материала при охлаждении без существенного зарождения или роста кристаллов льда и без значительного повреждения биологического материала [5].

Известно техническое решение, опубликованное в заявке США №US 2007042337, которое связано с криоконсервацией клеток, органов и организмов в изохорическом режиме (при постоянном объеме камеры), в которой размещены образцы в диапазоне температур от 0 до -273.25°С. Согласно изобретению, биологический объект размещают в камере и осуществляют переохлаждение жидкости, окружающей образец в изохорических условиях без активного образования зародышей кристаллов в жидкости. В жидкость добавляют криопротекторы, которые выбирают из группы, состоящей из гицерина, этиленгликоля и ДМСО. В тексте заявки нет данных об эффективности проведения криоконсервации и данных по концентрации криопротекторов, которые способствуют витрификации, но могут быть токсичными для образцов клеток, тканей или органов [6].

Известны разные типы устройств, предназначенных для витрификации под давлением. В заявке на патент США №US 2012210734 описано устройство для витрификации образцов в капсулах с регулируемым объемом.

Во внутреннем объеме камеры размещают капсулу и заполняют объем камеры водой. При охлаждении камеры за счет кристаллизации льда создается давление до 210 МПа которое передается на биологический образец, размещенный в капсуле, и при температуре -80°С происходит витрификация образца. К недостаткам устройства можно отнести высокие требования к прокладкам плунжеров, которые устанавливают с двух сторон капсулы, сложность избавления от воздушных пузырей при заполнении капсул, отсутствие контроля за уровнем давления, которое может превысить оптимальные значения, и недостаточно высокую жизнеспособность восстановленных после охлаждения образцов [7].

В заявке США №US 2014260346 описано несколько типов устройств для криоконсервации биологических образцов клеток и организмов. Устройство для витрификации организма содержит камеру высокого давления, внутренний объем которой приспособлен для приема биологического образца. Для быстрого охлаждения камеру опускают в жидкий азот или используют охлаждаемые элементы внутри камеры, через которые пропускают охладитель. Камера высокого давления содержит, по меньшей мере, один установочный элемент давления, охлаждающий элемент и теплопроводящий элемент. Элемент для установки давления содержит, по меньшей мере, один нажимной винт, размещенный в стенке камеры. Данная конструкция более приспособлена к отработке условий витрификации, чем к серийной витрификации образцов, поскольку для применения нажимного винта для создания или регулирования давления внутри камеры, особенно в процессе витрификации, необходимо изымать камеру из охлаждающей жидкости. При этом могут изменяться температурные режимы внутри камеры, что в свою очередь может привести к слабой воспроизводимости процесса [8].

Ни один из приведенных выше аналогов не показал высокой эффективности криоконсервации относительно крупных объектов (более 1 см3) подтвержденной в эксперименте. Существует необходимость в разработке технических решений, повышающих жизнеспособность криоконсервируемых образцов как в процессе витрификации так после восстановления после нагрева.

Задачей настоящего изобретения является создание нового способа для криоконсервации биологических и децеллюляризированных образцов, таких как клетки, ткани, фрагменты органов и отдельных органов с использованием охлаждения при высоком давлении и устройства для реализации способа позволяющего осуществлять криоконсервацию с повышенной жизнеспособностью образцов.

Сущность изобретения

Один из аспектов изобретения относится к способу криоконсервации биологического образца под гидравлическим давлением, с повышенной сохранностью образца за счет снижения его растрескивания. В соответствии с формулой изобретения биологический образец клеток, тканей или органов насыщают раствором криопротекторов, размещают в камере высокого давления, проводят витрификацию образца в камере при повышении гидравлического давления в объеме камеры до уровня 500-2100 атм. в зависимости от типа биологического образца. Затем переносят витрифицированный образец на хранение, разогревают образец. При этом на первом этапе охлаждения образца введение давления, со скоростью 5-50 атм/с проводят в диапазоне температур от 0°С до -50°С, и заканчивают формирование высокого давления в диапазоне температур от -35°С до -100°С. Второй этап охлаждения образца до температуры стеклования проводят при высоком давлении в изобарическом режиме. При достижении температуры биологического образца на 1-10°С ниже температуры стеклования переходят к третьему этапу охлаждения в изохорическом режиме до достижения температуры хранения образца. После окончания хранения биологического образца в камере восстанавливают высокое давление и проводят первый этап разогрева биологического образца от температуры хранения до температуры стеклования в изохорическом режиме. На втором этапе разогрева от температуры стеклования до диапазона температур от - 100°С до -35°С нагрев проводят в изобарическом режиме, поддерживая сформированное высокое давление на образец. На третьем этапе разогрева в диапазоне температур от -50°С до 0°С плавно снижают давление до нормобарического состояния со скоростью не более 50 атм/с.

Следующие аспекты изобретения относятся к условиям проведения витрификации клеток, тканей и органов, согласно которым клетки и ткани насыщают раствором витрификации, охлажденным от +10°С до -10°С. Заполняют внутренний объем камеры фрагментами органов или отдельными органами раствором витрификации, охлажденным от 0°С до -30°С. В другом варианте во внутреннем объеме камеры устанавливают капсулы с биологическим материалом клеток, тканей, фрагментов органов в растворе витрификации охлажденным от 0°С до - 30°С. Перед установкой капсул с образцом в камеру ее предварительно охлаждают в диапазоне от 0°С до -30°С. При этом максимальное давление в камере для витрификации децеллюляризированных образцов устанавливают в пределах от 500 до 2100 атм. Максимальное давление в камере для витрификации биологических образцов устанавливают в пределах от 500 до 1500 атм., более предпочтительно в пределах от 500 до 1000 атм.

Другой аспект изобретения относится к устройству для криоконсервации биологического образца под гидравлическим давлением, с использованием способа витрификации с повышенной сохранностью материала. Устройство содержит полую камеру, с возможностью размещения по меньшей мере одного образца или по меньшей мере одной капсулы во внутреннем объеме камеры. Камеру помещают в теплоизолированный объем, заполняемый охладителем. Давление внутри камеры формируют поршнем, который изменяет внутренний объем камеры, при этом поршень снабжен фиксатором положения с возможностью формирования постоянного объема внутри камеры при достижении диапазона температур, при котором происходит витрификации образца.

Перечень фигур

Фиг. 1. Температура в камере высокого давления при замораживании воды в режиме постоянного объема.

Фиг. 2. Структурная схема устройства для витрификации органов под давлением.

Фиг. 3. Сердце лягушки после витрификации. Где: А. Оттаянное сердце после витрификации под давлением. Сердце морфологически нормальное, наблюдалось восстановление сократительной активности. Б. Оттаянное сердце лягушки, после витрификации в аналогичном растворе криопротектора при нормобарии. Наблюдается механический разрыв в области соединения предсердий и желудочка (отмечено стрелкой). Сократительной активности после размораживания не наблюдалось.

Описание изобретения

В настоящем изобретении приведена технология витрификации биологических объектов, которая является выполнимой и более эффективной, чем способы, приведенные в уровне техники. В процессе изучения особенностей витрификации клеток, тканей и органов было обнаружено, что сохранность биологических объектов сильно зависит от условий выведения температуры объектов после их витрификации к более низким температурам, связанным с последующим долговременным хранением объектов при температурах в диапазоне от -140°С до - 195°С.

Изучение опыта предыдущих разработок показало, что значительное понижение сохранности объектов связано с растрескиванием образцов. Наблюдения, что при стекловании больших объемов наблюдаются структурные повреждения в виде образования крупных и мелких трещин были сделаны достаточно давно. Kroener С. в 1966 г. наблюдал образование трещин при стекловании растворов глицерина [9]. Fahy с соавторами в 1990 г исследовали аналогичное явление при стекловании раствора пропиленгликоля [10]. Большое количество исследований посвящено растрескиванию кровеносных сосудов при их витрификации. Известно, что растрескивание сосудов наиболее интенсивно происходит в диапазоне температур от -120°С до -150°С. Причем формирование трещин происходит как при охлаждении, так и при разогреве [11]. Механические напряжения, приводящие к растрескиванию, происходят за счет двух различных механизмов, связанных с температурным расширением. Во-первых, быстрое охлаждение и разогрев сопровождаются большими градиентами температуры, что приводит к неравномерному температурному расширению/сжатию материала в разных областях криоконсервируемого образца, во-вторых разные биологические структуры, а также раствор витрификации имеют разные коэффициенты температурного расширения, что ведет к деформациям и механическим напряжениям при глубоком охлаждении [12].

В свою очередь на растрескивание объекта значительно влияет высокое давление, которое положительно способствует первому этапу витрификации. Высокое давление позволяет снизить токсичность криопротекторов и замедлить или исключить образование кристаллов внутри объекта в процессе витрификации. В известных патентах высокое давление поддерживают на втором этапе охлаждения при температурах ниже температур витрификации [8], либо высокое давление резко сбрасывают после окончания витрификации [5], либо высокое давление формируют до начала охлаждения образца и последующей витрификации, переводя систему в изохорический режим проведения витрификации в постоянном объеме [6]. В изохорическом режиме в замкнутом объеме на первом этапе происходит снижение давления за счет охлаждения жидкости, затем происходит рост давления за счет формирования кристаллов и затем давление снова падает за счет снижения размеров стеклообразной массы вместе с образцом за счет снижения температуры (см. фиг. 1). В изохорическом режиме невозможно управлять давлением в процессе витрификации, что делает весьма сложной задачей полностью устранить рост кристаллов, которые потом на этапе размораживания вызывают девитрификацию и повышение растрескивания при нагреве образца.

Было обнаружено, что введение изохорического режима во второй фазе процесса при снижении температуры образца ниже температур витрификации, позволяет постепенно снижать давление на остеклованный объект и снижать процесс образования трещин и разрывов. В этом случае, за счет того, что на первом этапе объект проходил витрификацию при высокой скорости охлаждения и высоком давлении в нем зон, связанных с кристаллообразованием, что при дополнительном подборе криопротекторов позволяет практически исключить эффекты растрескивания образца как при охлаждении, так и при нагреве и восстановлении жизнеспособности.

Таким образом новый способ витрификации животных клеток, тканей и органов подавлением, состоит в том, что на первом этапе проводят по возможности наиболее быстрое охлаждение образца помещенного в витрифицирующий раствор и при охлаждении образца до температур в диапазоне от 0°С до -50°С, наиболее оптимально -15°С до -50°С начинают повышать гидравлическое давление со скоростью 5-50 атм/сек, что бы в диапазоне температур от -35°С до -100°С, а наиболее оптимально от -35°С до -100°С давление достигло до уровня 500-1500 атм для биологических образцов и до уровня от 500 до 2100 атм для децеллюляризированных образцов. В дальнейшем давление поддерживается неизменным до достижения объектом температуры на 1-10°С ниже температуры стеклования, которая может находиться в пределах от - 100°С до -130°С (для каждого объекта и используемого раствора витрификации температура витрификации определяется дополнительно). При дальнейшем снижении температуры образца ниже температуры стеклования охлаждение проводится в изохорическом режиме при постоянном объеме камеры. При этом режиме давление несколько понижается и расширение материала при снижении давления компенсирует температурное сжатие, что приводит к предотвращению или уменьшению явления растрескивания. При разогреве материала этапы воздействия давления и температуры на образец проводят в обратном порядке. Вначале устанавливают давление в камере в пределах от 500 до 1000 атм. При нагреве от температуры хранения до интервала от -100°С до -130°С разогрев производят в изохорическом режиме. При дальнейшем разогреве давление начинают снижать в диапазоне от -100°С до -35°С со скоростью 5-50 атм/с и полностью возвращаются к нормальному давлению в диапазоне 0°С до -50°С.

Биологические образцы выбирают из группы, состоящей из клеток, ткани, фрагмента органа, органа. В другом варианте биологический образец выбирают из группы, состоящей из децеллюляризированных образцов матрикса, ткани, фрагмента органа, органа. Образец ткани представляет собой кожу, ткани органов. Образец фрагмента органа представляет собой стенку сосуда, стенку пищевода, клапан сердца. Образец органа представляет собой почку, сердце, печень.

Для обеспечения выполнения условий быстрого охлаждения биологических образцов и создания высокого давления в рабочем объеме камеры разработано устройство, структурная схема которого приведена на фиг. 2.

Устройство для витрификации включает теплоизолирующую емкость (1), в которую наливают охладитель (2), например, жидкий азот, камеру (5) с внутренним объемом (6), в котором размещают фрагменты органов, органы или размещают капсулы с образцами клеток, тканей, фрагментов органов. В нижней части камеры (5) закрепляют обтюратор (4), который фиксируется гайкой обтюратора (3). В верхней части камеры (5) устанавливают поршень Бриджмена (7), на который через промежуточные элементы воздействует давление от пресса (9). Перемещение поршня фиксируют гайкой-фиксатором (8), что обеспечивает возможность формирования изохорического режима при охлаждении образца. В одном из вариантов, который включает, но не ограничивает других решений, давление создается пневматическим способом при открытии клапанов (10) и (11). Температуру во внутреннем объеме камеры измеряют датчиком температуры (на фиг. 2 датчик температуры не показан).

Капсулы выполнены с возможностью регулирования их внутреннего объема. Возможность регулирования объема капсулы осуществляют за счет пробок выполняющих роль поршней для сжатия/расширения объема внутри капсулы.

Капсулы выполняют из материалов входящих в группу полимеров, стекла, металлов, их комбинаций. Предпочтительно применять полимеры, из которых выполняют как тело капсулы, так и пробки, фиксирующие входные/выходные отверстия капсулы. Пробки выполняют роль поршней, передавая изменение давления в объеме камеры на внутренние объемы каждой конкретной капсулы, в которых размещены витрифицируемые образцы. Капсулы устанавливают во внутреннем объеме камеры с возможностью заполнения внутреннего объема камеры жидкостью для переноса охлаждения/нагрева от внешней поверхности камеры к поверхности капсул. Для переноса охлаждения/нагрева капсулы используют раствор глицерина.

Примеры.

Пример 1. Проверка эффективности витрификаиии фибробластов разными методами

Проверку эффективности витрификации и степень выживаемости фибробластов проводят на анализе данных полученных при витрификации в разных условиях. Первые два варианта витрификации включают применение в процессе витрификации высокого давления до 1000 атм.

Первый вариант витрификации основан на техническом решении, описанном в данном изобретении. В соответствии с новым способом, замораживание образца на первом этапе проводят без давления до тех пор, пока температура образца не достигнет температурной зоны от -20 до -50°С. Далее одновременно со снижением температуры формируют давление в рабочем объеме камеры, при этом максимальное давление составляет 1000 атм. Охлаждение проводят до достижения процесса остекловывания образца при температурах около -120°С после чего формируют режим охлаждения витрифицированного образца при постоянном объеме камеры до температур хранения (-140°С).

Второй вариант витрификации основан на других технических решениях, в соответствии с которыми давление в рабочей камере до 1000 атм. формируют перед замораживанием при температуре +4°С, далее осуществляют охлаждение образца до температуры хранения (-140°С), после хранения осуществляют отогрев образца в камере и снижают давление до нормы после отогрева.

Третий вариант витрификации проводится аналогично первому, но не включает формирование давления на образец в процессе витрификации.

Подготовка клеточной культуры к витрификации

Перевиваемую линию фибробластов мыши L929 культивируют в стандартных условиях в среде у DMEM с добавлением 10% фетальной бычьей сыворотки (FBS), 100 Ед/мл пенициллина и 100 мкг/мл стрептомицина. Дезинтеграцию монослоя для получения суспензии клеток осуществляют раствором 0,05% трипсина/EDTA (Gibco).

Для криоконсервации суспензию клеток охлаждают на ледяной бане и смешивают с холодным (от +3 до +4°С) раствором криопротекторов так, чтобы конечная концентрация криопротекторов составила: пропиленгликоль 40%, глицерин 10%, трегалоза 4%. После добавления криопротекторов суспензию клеток немедленно помещают в специальную капсулу. Капсулу помещают в камеру высокого давления и образец замораживают соответствии с одним из трех перечисленных вариантов витрификации.

Витрификация фибробластов с применением высокого давления с переходом в изохорический режим (вариант 1)

Для замораживания под давлением используют камеру высокого давления. Капсулу с суспензией клеток помещают в рабочее пространство (6) камеры высокого давления, заполненное 50% глицерином. Камеру помещают в теплоизолированную емкость (1) и устанавливают под пресс. В теплоизолированную емкость заливают хладагент (жидкий азот). После того, как температура образца достигнет температурной зоны от -20 до -50°С постепенно повышают давление в рабочем объеме камеры до максимума 1000 атм. Далее давление поддерживают неизменным до достижения объектом температуры на 4-6°С ниже температуры стеклования лежащей в пределах от -115°С до -125°С (для каждого витрифицируемого объекта определяется дополнительно). Далее фиксируют внутренний объем (6) камеры высокого давления за счет стопора поршня Бриджмена (7) гайкой фиксатора поршня (8) и проводят дальнейшее охлаждение рабочего объема камеры в изохорическом режиме. После окончания охлаждения камеру вынимают из-под пресса и помещают на хранение в холодильную камеру на - 140°С.

Для размораживания камеру вынимают из холодильной установки, помещают в теплоизолированную емкость (1) и устанавливают под пресс (9). Камеру разогревают при использовании воды комнатной температуры (+ 20 ÷ +24°С). При этом на первом этапе разогрев проводят в изохорическом режиме. При достижении температуры витрификации (-120°С) ослабляют стопор поршня Бриджмена (7), и переходят к изобарическому режиму разогрева. По достижении температурной зоны от -50 до -20°С постепенно понижают давление в камере. После разогрева камеры и выравнивания давления с атмосферным, камеру вынимают из теплоизолированной емкости (1), капсулы с пробами извлекают из камеры, помещают в ледяную баню и отправляют в бокс для анализа жизнеспособности.

Витрификация фибробластов с формированием высокого давления перед охлаждением образца (вариант 2)

Замораживание и размораживание суспензии проводят как в варианте 1, за исключением того, что максимальное давление в камере формируют перед замораживанием при температуре +4°С, далее осуществляют охлаждение образца до температуры хранения.

Криоконсервация фибробластов без применения давления (вариант 3) Замораживание и размораживание суспензии проводят как в варианте 1, за исключением того, что давление к внутреннему объему камеры не прилагается.

Проверка выживаемости клеток после криоконсервации

Выживаемость клеток после криоконсервации оценивают на основании 2 тестов.

Первый тест основан на селективном окрашивании клеток размороженной культуры трипановым синим и подсчета % живых клеток с помощью автоматического счетчика клеток Countess® II FL (Thermo Fisher Scientificlnc., США). Трипановый синий прокрашивает мертвые клетки и ткани. Живые клетки с неповрежденной клеточной мембраной не окрашиваются этим красителем.

Второй тест основан на культивировании размороженной культуры и оценки состояния клеток после 3-часовой инкубации. Оценивают распластанность клеток, которая свидетельствует об их жизнеспособности. Производят подсчет клеток по трем, выбранным оператором, полям зрения, содержащим наибольшее число клеток адгезировавших на поверхности лунок культурального планшета.

Жизнеспособность фибробластов после криоконсервации представлена в таблице 1. Как видно, после витрификации под давлением, создаваемым после снижения образца до температур в зоне от -20°С до -50°С выжило более 70% клеток, при этом они хорошо сохранили способность к адгезии к субстрату. При витрификации под давлением при повышении давления в температурной зоне от 0 до 4°С выживало около 20% клеток, которые плохо сохранили способность к адгезии к субстрату, что свидетельствует о снижении функциональной полноценности клеток. В контрольных экспериментах без приложения гидравлического давления витрификация была неполной, и выживаемость клеток составила также, как и во втором варианте около 20%.

Пример 2. Витрификация сердца лягушки

Проверку эффективности витрификации органов и степень их выживаемости проводят путем анализа данных, полученных при замораживании органа в разных вариантах. В первом варианте при замораживании сердца повышение давления до 1000 атм. проводят при охлаждении камеры до температурной зоны от -20°С до -50°С. При температуре -115°С переходят в изохорический режим охлаждения при постоянном объеме камеры и продолжают охлаждение до температуры хранения образца, аналогично процедуре, описанной в 1 варианте примера 1. После окончания охлаждения камеру вынимают из-под пресса и помещают на хранение в холодильную камеру на -140°С.

Во втором варианте замораживание происходит аналогично первому варианту, но охлаждение в изохорическом режиме осуществляют до температуры хранения в жидком азоте -196°С. После окончания охлаждения камеру вынимают из-под пресса и помещают на хранение в сосуд Дьюара с жидким азотом на -196°С.

Третий вариант витрификации проводится аналогично первому, но не включает формирование давления на образец при замораживании.

Подготовка сердца лягушки к витрификации

В эксперименте используют сердце травяной лягушки (Rana temporaria). Сердце изолируют с отрезком аортального ствола не менее 1 см. Сердце помещают в раствор Тироде с температурой +4°С для кратковременного хранения. Затем сердце помещают на установку для ретроградной перфузии и проводят перфузию раствором Тироде при +20°С для отмывки крови, одновременно отслеживают сердечные сокращения для оценки качества биопрепарата.

Насыщение сердца криопротекторными растворами

Проводят насыщение сердца криопротекторными растворами постепенно повышая концентрацию и снижая температуру растворов. Вначале насыщают сердце охлажденным до+4°С кардиоплегическим раствором Кустодиол. После достижения кардиоплегии проводят насыщение сердца в течение 60 минут криозащитным раствором, содержащим пропиленгликоль на основе базового раствора Евро Коллинз, постепенно доводя концентрацию до 50 вес % пропиленгликоля. После чего сердце снимают с перфузионной установки и перемещают в камеру высокого давления.

Замораживание под давлением

Сердце помешают в рабочее пространство камеры высокого давления, наполненное предварительно охлажденным раствором 50 вес % пропиленгликоля. Камеру собирают в рабочее положение, помещают в теплоизолированную емкость (1) и устанавливают под пресс (9). В теплоизолирующую емкость заливают хладагент - жидкий азот. Давление контролируют через манометр пресса. В соответствии с новым способом, замораживание образца на первом этапе проводят без давления до тех пор, пока температура образца не достигнет температурной зоны от -20 до -50°С. Далее одновременно с дальнейшем снижением температуры формируют давление в рабочем объеме камеры, при этом максимальное давление составляет 1000 атм. Охлаждение проводят до достижения процесса остекловывания образца при температурах около -120°С после чего формируют изохорический режим дальнейшего охлаждения методом фиксации рабочего объема камеры за счет стопора поршня Бриджмена (7) гайкой фиксатора поршня (8). Далее охлаждают образец при постоянном рабочем объеме камеры до температур хранения (-140°С или -196°С в зависимости от варианта).

Размораживание витрифицированного сердца

Камеру вынимают из морозильной камеры или сосуда Дьюара с жидким азотом, помещают в теплоизолированную емкость и устанавливают под пресс. Камеру разогревают при использовании воды комнатной температуры (+20 ÷ +24°С), при этом с помощью пресса на камеру подают давление в соответствии с режимом, описанным в варианте 1 примера 1. После сброса давления камеру вынимают из воды, заворачивают в теплоизолятор и открывают.

Отмывка сердца и подготовка к определению его жизнеспособности

Сердце помещают на установку для перфузии аналогичным способом, описанным выше и проводят отмывание сердца в течение 20 минут криозащитным раствором, содержащим пропиленгликоль на основе базового раствора Евро Коллинз, постепенно снижая концентрацию пропиленгликоля до 10 вес %. Проводят перфузию раствором Кустодиол (без криопротекторов) с температурой +4°С в течение 20 минут. Подают раствор Рингера с температурой +20°С не менее 1 часа, но не более 2х часов в зависимости от восстановления сердечной активности.

Проведение оценки жизнеспособности сердца

Жизнеспособность сердца оценивают по восстановлению сердечных сокращений. Оценку проводят по следующей шкале: Сократительная активность предсердий (Пр): нет сокращений «0», слабая волна сокращения по поверхности предсердий без выраженного ритма - «1», выраженные заметные сокращения одного или двух предсердий без четкого ритма - «2», сокращения полные, ритмичные - «3»; сократительная активность желудочков (Ж) нет сокращений «0», слабая волна сокращения по всей поверхности желудочка либо выраженное сокращение 1 участка желудочка без четкого ритма - «1», выраженное сокращение 1 участка желудочка, занимающего не менее 50% общей площади желудочка либо выраженное сокращение 2-х и более участков желудочка без четкого ритма - «2», выраженное сокращение всей площади желудочка, ритмичное - «3».

В результате витрификации сердца лягушки под давлением до температуры -140°С и последующего размораживания сокращения сердца регистрировали через 30-70 минут перфузии раствором Рингера. Восстановление сокращений по принятой шкале функциональной активности показаны под номером 1 в таблице 2.

В результате витрификации сердца лягушки под давлением до температуры жидкого азота и последующего размораживания сокращения сердца регистрировали через 30-70 минут перфузии раствором Рингера. Восстановление сокращений по принятой шкале функциональной активности показаны под номером 2 в таблице 2. Разрывов и других морфологических дефектов после размораживания обнаружено не было.

В контрольном эксперименте (витрификация при нормобарии) сердечная деятельность не восстанавливалась в течение 120 минут перфузии раствором Рингера при +20°С. При исследовании морфологического состояния сердца можно было заметить разрывы в области соединения желудочка и предсердий. В одном случае после размораживания сердце распалось на две части (см. фиг. 3).

Промышленная воспроизводимость

В соответствии с новым способом замораживание биологических образцов сердца повышении давления до 1000 атм проводят при охлаждении камеры от -20°С до -50°С. При температуре витрификации переходят в изохорический режим охлаждения при постоянном объеме камеры и продолжают охлаждение до температуры хранения образца. Устройство для криоконсервации образцов позволяет обеспечить воспроизводимость процессов охлаждения, хранения и разогрева образцов с повышенной сохранностью образца за счет снижения его растрескивания.

Источники информации

1. НЕ XIAOMING et al. Methods for the Cryopreservation of Mammalian Cells. Патент США US 9538745 (2017-01-10).

2. KHIRABADI В. et al. Method of cryopreservation of blood vessels by vitrification. Патент США US 6194137 (2001-02-27).

3. KHIRABADI В. et al. Method of cryopreservation of tissues by vitrification. Патент США US 7157222 (2007-01-02).

4. PRIBENSZKY CSABA et al. POST-THAW SURVIVAL OF CRYOPRESERVED BIOLOGICAL MATERIAL BY HYDROSTATIC PRESSURE CHALLENGE. Патент США №US 8415093 (2013-04-09).

5. FAHY G.M. Cryopreservation of biological materials in a non-frozen or vitreous state. Патент США №US 4559298 (1985-12-17).

6. RUBINSKY BORIS et al. Isochoric method and device for reducing the probability of ice nucleation during preservation of biological matter at subzero centigrade temperatures. Заявка на патент США №US 2007042337 (2007-02-22).

7. HOFFMAN GARY et al. Production and use of high pressure for cryopreservation and cryofixation. Заявка на патент США №US 2012210734 (2012-08-23).

8. FUHR GUENTER et al. DEVICE AND METHOD FOR PRESSURIZED CRYOPRESERVATION OF A BIOLOGICAL SAMPLE. Заявка на патент США №US 2014260346 (2014-09-18).

9. Kroener С., Luyet В. Formation of cracks during the vitrification of glycerol solutions anddisappearance of the cracks during rewarming. Biodynamica 1966; 10(201): 47-52.

10. Fahy G, Saur J, Williams R. Physical problems with the vitrification of large biological systems. Cryobiology 1990; 27: 492-510.

11. Pegg D., Wusteman M., Boylan S. Fractures in cryopreserved elastic arteries. Cryobiology 1997; 34(2): 183-192.

12. Steif P. S., Palastro M. C., RabinY. Analysis of the Effect of Partial Vitrification on Stress Development in Cryopreserved Blood Vessels. Med. Eng. Phys. 2007 July; 29(6): 661-670.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 174.
31.05.2019
№219.017.71bb

Полиэфирный нетканый материал, поглощающий в свч-диапазоне

Изобретение относится к области радиофизики, и материал предназначен для поглощения электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона, причем его структура и свойства адаптированы для использования в средствах экипировки и создания элементов носимой одежды для маскировки...
Тип: Изобретение
Номер охранного документа: 0002689624
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.71d0

Способ получения высокостехиометричных наноразмерных материалов на основе иттрий-алюминиевого граната с оксидами редкоземельных элементов

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной...
Тип: Изобретение
Номер охранного документа: 0002689721
Дата охранного документа: 29.05.2019
01.06.2019
№219.017.71e3

Способ создания активной среды на основе полупроводниковых люминесцентных нанокристаллов в полимерной матрице

Использование: для создания активной среды для нано-, микро- и макроустройств. Сущность изобретения заключается в том, что способ создания активной среды на основе полупроводниковых люминесцентных нанокристаллов в полимерной матрице заключается в том, что создают акрилатную твердую полимерную...
Тип: Изобретение
Номер охранного документа: 0002689970
Дата охранного документа: 29.05.2019
08.06.2019
№219.017.75c6

Способ изготовления полупроводниковых гетероструктур с атомарно гладкими стоп-слоями ingap и inp на подложках gaas и inp

Изобретение относится к электронной и оптоэлектронной технике и может быть использовано для изготовления монолитных интегральных схем, работающих в сантиметровом и миллиметровом диапазонах длин волн, а также для изготовления вертикально-излучающих лазеров ближнего инфракрасного диапазона....
Тип: Изобретение
Номер охранного документа: 0002690859
Дата охранного документа: 06.06.2019
14.06.2019
№219.017.8302

Способ получения термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов с улучшенными физико-механическими характеристиками

Настоящее изобретение относится к способу капсулирования термостойких ароматических полиэфирэфир- и сополиэфирэфиркетонов: где I - полиэфирэфиркетон на основе дифенилолпропана и 4,4'-дифторбензофенона, число мономерных звеньев «а» соответствует 295-320, II - сополиэфирэфиркетон на основе...
Тип: Изобретение
Номер охранного документа: 0002691409
Дата охранного документа: 13.06.2019
14.06.2019
№219.017.8325

Ароматические сополиэфирсульфонкетоны и способ их получения

Изобретение относится к способу получения ароматических сополиэфирсульфонкетонов, используемых в качестве термо- и теплостойких конструкционных полимерных материалов. Способ получения ароматических сополиэфирсульфонкетонов заключается в том, что проводят высокотемпературную поликонденсацию...
Тип: Изобретение
Номер охранного документа: 0002691394
Дата охранного документа: 13.06.2019
15.06.2019
№219.017.8346

Линия мышей, трансгенных по альфа-цепи т-клеточного рецептора клеток памяти, для изучения их функциональной активности

Изобретение относится к области молекулярной биотехнологии, в частности к кассетному вектору, содержащему полноразмерную кДНК альфа-цепи Т-клеточного рецептора клеток памяти, способу получения данного вектора, а также способу получения линии мышей, трансгенных по альфа-цепи Т-клеточного...
Тип: Изобретение
Номер охранного документа: 0002691484
Дата охранного документа: 14.06.2019
06.07.2019
№219.017.a710

Устройство для исследования термической, термоокислительной и гидролитической деструкции полимерных материалов и способ его осуществления

Изобретение относится к устройству и способу исследования термической, термоокислительной и гидролитической деструкции полимерных материалов. Устройство для реализации способа исследования термической, термоокислительной и гидролитической деструкции полимерных материалов, состоящее из камеры...
Тип: Изобретение
Номер охранного документа: 0002693738
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a716

Ароматические сополиариленэфиркетоны и способ их получения

Настоящее изобретение относится к способу получения ароматических сополиариленэфиркетонов путем реакции высокотемпературной поликонденсации на основе дифенилолпропана, дифторбензофенона, в среде диметилацетамида с использованием гидрохинона, причем введение диолов в реакционную среду происходит...
Тип: Изобретение
Номер охранного документа: 0002693696
Дата охранного документа: 04.07.2019
06.07.2019
№219.017.a723

Способ получения сополифениленсульфидсульфонов

Изобретение относится к способу получения сополимеров полифениленсульфидсульфонов, которые могут применяться для изготовления конструкционных изделий, предназначенных для использования в электронике, электротехнике, авиакосмической технике и др. Способ получения сополифениленсульфидсульфонов...
Тип: Изобретение
Номер охранного документа: 0002693697
Дата охранного документа: 04.07.2019
Показаны записи 31-35 из 35.
02.06.2023
№223.018.7525

Устройство и способ для измерения спектров собственного излучения жидких образцов в инфракрасном диапазоне

Изобретение относится к области спектроскопии и касается устройства и способа для исследования жидких биологических образцов в инфракрасном диапазоне. Устройство включает в себя спектрометр, который обеспечивает возможность Фурье-преобразования сигнала, узел формирования холодного фона,...
Тип: Изобретение
Номер охранного документа: 0002786047
Дата охранного документа: 16.12.2022
06.06.2023
№223.018.792d

Способ измерения напряженности электрического поля

Изобретение относится к области измерительной техники и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне измерения. Способ измерения напряженности электрического поля дополнительно содержит этапы, на которых конфигурацию и размер...
Тип: Изобретение
Номер охранного документа: 0002749335
Дата охранного документа: 08.06.2021
16.06.2023
№223.018.7ac0

Способ измерения напряженности электрического поля повышенной точности

Изобретение относится к области измерительной техники и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне с повышенной точностью. Сущность: способ заключается в помещении датчика в исследуемую точку поля иопределении модуля вектора...
Тип: Изобретение
Номер охранного документа: 0002734578
Дата охранного документа: 20.10.2020
16.06.2023
№223.018.7cd5

Способ измерения напряженности электрического поля повышенной точности

Изобретение относится к измерительной технике и может быть использовано для измерения напряженности электрического поля в широком пространственном диапазоне с повышенной точностью. Технический результат заключается в повышения точности измерения напряженности неоднородных электрических полей в...
Тип: Изобретение
Номер охранного документа: 0002743617
Дата охранного документа: 20.02.2021
17.06.2023
№223.018.7fa9

Сдвоенный датчик составляющих вектора напряженности электрического поля

Изобретение относится к области измерительной техники и может быть использовано для измерения составляющих вектора напряженности электрического поля. Сущность: датчик для измерения напряженности электрического поля содержит проводящую сферу, на поверхности которой диаметрально противоположно...
Тип: Изобретение
Номер охранного документа: 0002768200
Дата охранного документа: 23.03.2022
+ добавить свой РИД