×
29.05.2019
219.017.6284

БЕСПРОВОДНОЙ МОНИТОР ПРОИЗВОДСТВЕННЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть

Правообладатели

№ охранного документа
0002688272
Дата охранного документа
21.05.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к беспроводным средствам мониторинга. Технический результат – уменьшение потребления мощности. Для этого предложено беспроводное устройство мониторинга производственного технологического процесса, которое включает в себя контроллер, выполненный с возможностью контроля функционирования беспроводного устройства мониторинга производственного технологического процесса, датчик окружающей среды, который выполнен с возможностью восприятия окружающей среды производственного технологического процесса, ближайшего к устройству, и ответного обеспечения выходного сигнала датчика. Выходные схемы выполнены с возможностью обеспечения выходных данных на основе выходного сигнала датчика. Контроллер предписывает датчику окружающей среды войти в режим большой мощности после детектирования неохарактеризованной аномалии в выходном сигнале датчика. 3 н. и 21 з.п. ф-лы, 9 ил.
Реферат Свернуть Развернуть

УРОВЕНЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к системам мониторинга или контроля производственных технологических процессов. Более конкретно, настоящее изобретение относится к беспроводным полевым устройствам технологических процессов, используемым в таких системах.

[0002] В производственных условиях, используются системы для мониторинга и контроля производственных ресурсов и функционирования производственных и химических технологических процессов и т.п. Обычно, система, которая выполняет эти функции, использует полевые устройства, распределенные в ключевых местоположениях в производственном технологическом процессе, связанные со схемами управления в диспетчерской посредством контура управления технологическим процессом. Термин «полевое устройство» относится к любому устройству, которое выполняет некоторую функцию в системе распределенного управления или мониторинга технологического процесса, в том числе ко всем устройствам, используемым при измерении, контроле и мониторинге производственных технологических процессов.

[0003] Обычно, каждое полевое устройство также включает в себя коммуникационные схемы, которые используются для установления связи с контроллером технологического процесса, другими полевыми устройствами, или другими схемами, через контур управления технологическим процессом. В некоторых установках, контур управления технологическим процессом также используется для подачи регулируемого тока и/или напряжения на полевое устройство для питания энергией полевого устройства. Контур управления технологическим процессом также переносит данные, либо в аналоговом, либо в цифровом формате.

[0004] В некоторых установках, беспроводные технологии начали использоваться для установления связи с полевыми устройствами. Беспроводное функционирование упрощает проводку и монтаж полевых устройств. В настоящее время используются беспроводные установки, в которых полевое устройство включает в себя внутренний источник питания. Однако, вследствие ограничений по мощности, функциональность таких устройств обычно ограничена.

[0005] Обычно, полевые устройства используются для восприятия или контроля переменных технологического процесса в производственном технологическом процессе. Однако, в некоторых установках, может быть желательным контролировать локальную окружающую среду полевого устройства.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0006] Монитор производственного технологического процесса для мониторинга производственного технологического процесса включает в себя контроллер, выполненный с возможностью контроля функционирования монитора производственного технологического процесса. Датчик окружающей среды выполнен с возможностью восприятия окружающей среды производственного технологического процесса, ближайшего к устройству, и ответного обеспечения выходного сигнала датчика. Выходные схемы выполнены с возможностью обеспечения выходных данных на основе выходного сигнала датчика. Контроллер предписывает датчику окружающей среды войти в режим большой мощности после детектирования аномалии и/или вероятной аномалии в выходном сигнале датчика.

[0007] Эта Сущность Изобретения и Реферат обеспечены для ознакомления в упрощенной форме с выбором идей, которые дополнительно описаны ниже в Подробном Описании. Сущность Изобретения и Реферат не предназначены для идентификации ключевых признаков или существенных признаков заявленного объекта изобретения, а также не предназначены для использования в качестве вспомогательного средства для определения объема заявленного объекта изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Фиг. 1 является упрощенной блок-схемой, показывающей систему мониторинга или контроля технологического процесса, используемую настоящим изобретением.

[0009] Фиг. 2 является блок-схемой, показывающей компоненты в полевом устройстве одного варианта осуществления настоящего изобретения.

[0010] Фиг. 3 является более подробной блок-схемой, показывающей компоненты полевого устройства фиг. 2.

[0011] Фиг. 4 показывает захваченное изображение производственного технологического процесса во время функционирования в «контрольном режиме» с низким разрешением и малой мощностью.

[0012] Фиг. 5 является изображением, собранным из производственного технологического процесса в контрольном режиме функционирования с низким разрешением и малой мощностью, показывающим аномалию в изображении.

[0013] Фиг. 6 является изображением, захваченным из производственного технологического процесса в режиме функционирования с высоким разрешением и большой мощностью.

[0014] Фиг. 7 является графиком, показывающим частотную область захваченного акустического сигнала во время контрольного режима функционирования с низким спектральным разрешением и малой мощностью.

[0015] Фиг. 8 является графиком частотной области захваченного акустического сигнала во время режима функционирования с высоким спектральным разрешением и большой мощностью.

[0016] Фиг. 9 является графиком зависимости амплитуды от частоты, показывающим граничное ограждение.

ПОДРОБНОЕ ОПИСАНИЕ ИЛЛЮСТРАТИВНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0017] Многие высоко оцениваемые приложения мониторинга, которые используют технологии мониторинга, такие как видео-технология, инфракрасная технология, ультразвуковая технология и аудио-технология, нуждаются в системах, которые могут приобретать информацию с высокими частотами дискретизации и/или высокими разрешениями. Например, инфракрасная система мониторинга с низким разрешением может быть способной контролировать общий тепловой профиль. Однако, для конкретной идентификации местоположения тепловой аномалии требуется высокое разрешение. Захват и анализ инфракрасных изображений с высоким разрешением необходим для полного охарактеризования аномалии и для отличения ее от фонового шума или от ожидаемых тепловых изменений в окружающей среде. Однако, приобретение и обработка таких изображений с высоким разрешением требует значительной мощности. Это быстро истощает аккумуляторные батареи полевого устройства с собственным источником питания, такого как беспроводное полевое устройство. Подобная проблема существует и в других технологиях для мониторинга окружающей среды, или, например, в технологиях аудио-мониторинга и ультразвукового мониторинга. Для корректного охарактеризования акустического события, высокие частоты дискретизации необходимы для анализа спектрального контента таким образом, чтобы профиль сигнала мог быть сравнен с известной акустической характеристикой, например, характеристикой, которая возникает, когда система имеет утечку.

[0018] Настоящее изобретение предлагает технологии для решения вышеупомянутой проблемы. Обеспечена система для мониторинга окружающей среды, которая использует как режим малой мощности, в котором возможно приобретение данных с низкими разрешениями и/или низкими частотами дискретизации, так и режим большой мощности, который активируется только тогда, когда (контрольный) режим малой мощности детектирует сигнал, представляющий потенциальный интерес. Настоящее изобретение обеспечивает технологию для мониторинга окружающей среды производственного технологического процесса и относится к системам мониторинга, реализуемым в беспроводных полевых устройствах с локальным или внутренним питанием энергией. Беспроводной монитор производственного технологического процесса реализован в полевом устройстве и выполнен с возможностью мониторинга окружающей среды в производственном технологическом процессе. Мониторинг может осуществляться посредством любого подходящего датчика окружающей среды, включающего в себя видео-датчик, инфракрасный датчик, акустический датчик, или другие датчики. Такой датчик требует высокой частоты дискретизации и/или высокого разрешения для охарактеризования и определения местоположения интересных событий в локальной (окружающей) среде и отличения воспринятых сигналов, связанных с этими событиями, от фонового шума. Однако, когда высокое разрешение и/или высокие частоты дискретизации требуют увеличенной величины мощности, используется конфигурация, в которой «контрольный режим» малой энергии реализуется для нормального функционирования. В этом «контрольном режиме», получают исходное измерение с низким разрешением. Если на основе этого исходного измерения с низким разрешением будет детектирована аномалия, то система может войти в режим большой мощности с высоким разрешением. В режиме большой мощности, данные собирают при высокой скорости передачи данных и/или высоком разрешении. Затем, устройство может повторно войти в «контрольный режим» для непрерывного функционирования при малой мощности.

[0019] Фиг. 1 является упрощенной схемой, показывающей иллюстративную систему 10 мониторинга или контроля технологического процесса, которая включает в себя диспетчерскую 12, имеющую связь с полевыми устройствами 14 и 16 через беспроводной шлюз 13. Связь между шлюзом 13 и диспетчерской 12 может осуществляться по проводному или беспроводному каналу связи. Показано, что полевое устройство 14 соединено с трубопроводом 18 технологического процесса, и показано, что полевое устройство 16 соединено с резервуаром 20 для хранения. Однако, устройства 14, 16 могут быть расположены в любом необходимом местоположении. Устройства 14 и 16 включают в себя антенны 22 и 24, соответственно, для передачи и/или приема информации от антенны 26, связанной с беспроводным шлюзом 13. Устройства 14 и 16 обмениваются данными с использованием беспроводных радиочастотных (radio frequency - RF) каналов 28, 29 и 30 связи друг с другом и с удаленным местоположением, таким как шлюз 13. Одним примером беспроводного коммуникационного протокола является протокол WirelessHART®, согласно IEC 62591. Полевые устройства 14 и 16 включают в себя компоненты для обеспечения локального (внутреннего) питания энергией для устройств, не требующего дополнительных проводов. Например, устройство 14 и 16 может включать в себя солнечные элементы и/или аккумуляторные батареи для локального питания энергией.

[0020] Когда полевые устройства 14 и 16 функционируют с использованием ограниченной мощности, их возможности обработки и количество данных, которое они могут передавать, являются ограниченными. В одном аспекте, настоящее изобретение включает в себя беспроводное полевое устройство, такое как устройство 14 и 16, которое включает в себя возможность мониторинга окружающей среды с использованием датчика окружающей среды. Беспроводные полевые устройства, которые могут функционировать в удаленных местоположениях, которые не требуют внешнего источника питания, выпускаются, например, компанией Rosemount Inc. of Chanhassen, MN. Такие устройства выполнены с возможностью измерения переменных технологического процесса или получения другой информации о технологическом процессе и передачи информации с использованием беспроводных коммуникационных технологий, таких как протокол WirelessHART®.

[0021] Фиг. 2 является упрощенной блок-схемой, показывающей полевое устройство 14, показанное на фиг. 1, более подробно. Согласно этому варианту осуществления, полевое устройство 14 включает в себя необязательный преобразователь 31, беспроводные входные/ выходные (коммуникационные) схемы 32, контроллер 34, схему 36 источника питания, аккумуляторную батарею 38 и панель 40 солнечных батарей. Преобразователь 31 может быть либо датчиком, используемым для восприятия переменной технологического процесса, либо управляющим элементом, таким как клапан, который используется для контроля переменной технологического процесса. Беспроводные коммуникационные схемы 32 соединяются с антенной 22 для установления связи со шлюзом 13 через его антенну 26. Необязательно, устройство 14 обменивается данными прямо с диспетчерской 12. Схемы 36 источника питания используется для обеспечения питания энергией для схем в пределах полевого устройства 14. Схемы 36 источника питания могут функционировать с использованием внутренней энергии, принятой от солнечного элемента 40 и/или энергии, принятой от аккумуляторной батареи 38. Схемы 36 источника питания могут быть запитаны энергией от любого типа внутреннего источника питания, который не требует проводного соединения с удаленным источником питания. Схемы 36 источника питания могут содержаться в пределах полевого устройства 14, или, в некоторых вариантах осуществления, могут быть расположены снаружи полевого устройства и расположены вблизи полевого устройства. Например, питаемый от солнечных батарей блок может быть использован для питания энергией передатчика или другого полевого устройства по двухпроводному соединению, которое также используется для передачи информации. В такой конфигурации, схемы источника питания могут также обеспечить беспроводную связь с удаленным местоположением. Если принимается достаточная энергия от солнечного элемента 40, то схемы 36 источника питания могут быть также использованы для зарядки аккумуляторной батареи 38. Датчик 74 окружающей среды используется для мониторинга окружающей среды устройства 14, как описано более подробно ниже.

[0022] Фиг. 3 является более подробной блок-схемой полевого устройства 14 технологического процесса согласно одному варианту осуществления настоящего изобретения и показывает необязательный преобразователь 31, сконфигурированный в виде датчика переменной технологического процесса, который может быть использован для измерения переменной технологического процесса, такой как давление, температура, и т.д. Датчик 31 переменной технологического процесса может быть расположен в пределах корпуса устройства 14 или снаружи корпуса, как показано на фиг. 3. Схемы 52 измерения соединяются с датчиком 31 переменной технологического процесса и используются для выполнения обработки исходного сигнала перед обеспечением сигнала измерения для контроллера 34. Необязательное пользовательское устройство 54 ввода данных показано на фиг. 3. Подобным образом, показано необязательное локальное устройство вывода данных, такое как LCD-дисплей 56.

[0023] Контроллер 34 обычно является контроллером на основе микроконтроллера и соединяется с памятью 60 и генератором 62 синхронизирующих импульсов. Генератор 62 синхронизирующих импульсов определяет скорость функционирования цифровых схем в пределах полевого устройства 14, а память 60 используется для запоминания информации. Память 60 может содержать как постоянную, так и энергозависимую память, и может быть использована для запоминания данных, используемых во время обработки, программирования команд, информации о калибровке, или другой информации, данных или команд, используемых в полевом устройстве 14. Память 60 также запоминает информацию от датчика 74, описанного здесь.

[0024] Фиг. 3 также показывает датчик 74 окружающей среды согласно одному иллюстративному варианту осуществления. Датчик 74 окружающей среды функционирует, как описано более подробно ниже, и выполнен с возможностью восприятия некоторого аспекта окружающей среды 75 полевого устройства 14. Например, датчик 74 окружающей среды может содержать устройство захвата изображений. В такой конфигурации, датчик 74 выполнен с возможностью захвата изображений из окружающей среды 75. Подобным образом, датчик окружающей среды может содержать акустический или ультразвуковой датчик, выполненный с возможностью захвата акустических или ультразвуковых сигналов из окружающей среды 75. В другом примере, датчик 74 является тепловым детектором, выполненным с возможностью захвата теплового изображения, такого как инфракрасное (infrared - IR) изображение, из окружающей среды 75. В одной конфигурации, обеспечен необязательный датчик 74А с высоким разрешением. В такой конфигурации, датчик 74А может быть использован для захвата изображений с высоким разрешением или образца окружающей среды при более высокой скорости передачи данных, чем датчик 74.

[0025] Как обсуждалось выше, устройство 14 функционирует в «контрольном режиме» и получает информацию с низким разрешением/ низкой скоростью передачи данных от датчика 74 во время нормального функционирования. Обширная область окружающей среды 75 может контролироваться датчиком 74. Например, если датчик 74 является инфракрасным датчиком, то датчик 74 может содержать маломощную инфракрасную камеру, которая питается энергией периодически, для захвата изображений с низким разрешением, таких как изображения, показанные на фиг. 4. Контроллер 34 анализирует изображения с низким разрешением, захваченные датчиком 74, для определения того, присутствуют ли тепловые аномалии, которые подтверждаются захватом дополнительных изображений с высоким разрешением и анализом. Это определение может быть осуществлено посредством любой подходящей технологии, например, посредством простого сравнения пикселов захваченного изображения с образцовым изображением, хранящимся в памяти 60 устройства 14. Это образцовое изображение может быть захвачено во время введения в эксплуатацию устройства, или на основе входных данных, принятых посредством схем 32 или локального устройства 54 ввода данных. В другом примере, образцовое изображение передается к устройству 14 с использованием беспроводной связи и т.п. Система может содержать в памяти 60 несколько образцовых изображений, которые все показывают нормальные тепловые профили для конкретного поля зрения датчика 74. Если обнаружено, что приобретенное изображение соответствует одному из «нормальных» изображений, или обнаружено, посредством некоторой другой маломощной технологии анализа тепловых аномалий, что приобретенное изображение не имеет никаких тепловых аномалий, то система может войти в режим ожидания и находиться в нем до тех пор, пока не будет захвачено следующее планируемое изображение с низким разрешением. Однако, если контроллер 34 определит, что захваченные данные с низким разрешением содержат вероятную тепловую аномалию, такую как аномалия, показанная на фиг. 5, система может войти в режим с высоким разрешением. В одной конфигурации, в режиме с высоким разрешением, датчик 74 входит в режим захвата с высоким разрешением. В другом иллюстративном варианте осуществления, второй датчик 74А с высоким разрешением используется для захвата изображений с высоким разрешением. В этом режиме, полевое устройство 14 собирает одно или несколько изображений с высоким разрешением конкретного поля зрения окружающей среды 75, например, как показано на фиг. 6. Эти изображения могут быть затем дополнительно проанализированы для обеспечения дополнительного охарактеризования аномалии, включающего в себя, например, местоположение аномалии и температуру. Дополнительно, изображение с высоким разрешением может быть передано к удаленному местоположению, такому как диспетчерская 12, для дополнительного анализа, и может быть просмотрено оператором.

[0026] Подобная технология может быть использована для акустической системы мониторинга. Например, контрольный режим малой мощности может быть использован для приобретения акустических данных их окружающей среды 75 при низкой частоте дискретизации с использованием датчика 74. Данные с низкой частотой дискретизации могут быть быстро проанализированы любым подходящим способом, в том числе путем сравнения данных с низкой частотой дискретизации и известными нормальными акустическими профилями данной области, хранящимися в памяти 60 устройства 14. Фиг. 7 является графиком таких данных с низкой частотой дискретизации. Эти акустические данные с низким спектральным разрешением показывают аномалию, как показано на фиг. 7. Если аномалия детектирована во время контрольного режима, то контроллер 34 предписывает системе войти в режим с высокой частотой дискретизации для приобретения акустического профиля с большой шириной полосы частот окружающей среды, такого как профиль, показанный на фиг. 8. Эти данные могут быть приобретены с использованием того же самого датчика 74, или могут быть приобретены с использованием другого датчика 74А, сконфигурированного для приобретения с высокой скоростью передачи данных. После получения данных с высокой скоростью передачи данных, профиль может быть охарактеризован. Например, профиль может быть промасштабирован и сравнен с известными акустическими событиями, такими как утечки, износ подшипников, возгорания, и т.д.

[0027] Фиг. 9 является графиком, показывающим одну технологию для детектирования аномалии в акустическом сигнале. Фиг. 9 является графиком зависимости амплитуды от частоты. График 80 показывает предысторию или граничное «ограждение» воспринятого акустического сигнала. Это ограждение является одним примером сохраненного профиля. Он может быть запрограммирован посредством технологии обучения, или оператором, устанавливающим конкретные частоты и пороги. Фиг. 9 также показывает принятый акустический сигнал 82, который нарушает акустическое ограждение 80. Это указывает на то, что в принятом акустическом сигнале возникла аномалия, и может быть инициирован режим захвата с высоким разрешением. Подобные технологии могут быть использованы для RF или других технологий восприятия.

[0028] Дополнительно к получению данных с высоким разрешением или данных с более высокой частотой дискретизации, полевое устройство 14 может функционировать с высокой частотой генератора синхронизирующих импульсов, например, посредством настройки генератора 62 синхронизирующих импульсов. Это позволяет контроллеру 34 функционировать с большей скоростью для анализа собранных данных. В одном аспекте, система выполнена с возможностью передачи информации, например, беспроводным способом, с использованием канала 28 связи, которая указывает на то, что энергия, доступная от аккумуляторной батареи 38, является недостаточной для непрерывного функционирования. Например, хотя система может функционировать в непрерывном «контрольном режиме», запасенная энергия может быть недостаточной для того, чтобы устройство вошло в режим большой мощности и оставалось в нем в течение любого значительного периода времени. При нахождении в этом состоянии, система может автоматически перейти в другой режим функционирования. Вместо входа в режим с высоким спектральным разрешением, при его инициировании, система пропустит этот этап и просто предупредит пользователя через беспроводную сеть о том, что была детектирована неохарактеризованная аномалия.

[0029] Аномалия может быть детектирована с использованием подходящей технологии. Как обсуждалось выше, собранные данные могут быть сравнены с известными нормальными профилями. Другие технологии включают в себя сравнение собранных данных с порогами во временной или частотной области, мониторинг быстрых изменений или пиков в собранных данных, мониторинг внезапных выпадений сигнала в собранных данных. Анализ может быть выполнен во временной или частотной области, или в некоторой их комбинации. При использовании здесь, термин «датчик окружающей среды» относится к датчику, который выполнен с возможностью восприятия некоторого аспекта окружающей среды устройства 14. Они могут быть датчиками изображений, включающими в себя датчики видимого и инфракрасного излучения, а также акустическими датчиками, включающими в себя как звуковые, так и ультразвуковые акустические датчики. В одной конфигурации, датчик окружающей среды воспринимает более чем единственную точку на графике, например, такую как единственная точка на графике, обеспечиваемая датчиком температуры. Конкретный датчик может быть выполнен с возможностью функционирования в двух режимах функционирования, в «контрольном режиме» малой мощности, для приобретения информации с низким разрешением и/или с низкой скоростью передачи данных, а также в режиме большой мощности, для приобретения информации с высоким разрешением и/или с высокой скоростью передачи данных. В другой конфигурации, второй датчик окружающей среды обеспечен для сбора данных с высоким разрешением/ высокой скоростью передачи данных. В другой иллюстративной конфигурации, одно или несколько устройств 14 обеспечены для мониторинга окружающей среды в «контрольном режиме». Данные, собранные во время мониторинга в «контрольном режиме», передаются в другое местоположение, например, через канал 28 связи. Эта информация может быть принята в местоположении, которое имеет больший источник питания или соединен с линией электропитания. Данные могут быть использованы для инициирования режима большой мощности, в котором данные с высоким разрешением/ высокой скоростью передачи данных собираются от датчика в удаленном местоположении. В другой иллюстративной конфигурации, аномалия может быть детектирована в одном устройстве 14, и второе устройство, такое как устройство 16, показанное на фиг. 1, используется для сбора информации с высоким разрешением/ высокой скоростью передачи данных. Подобным образом, если датчик 74 является направленным, то при входе в состояние с высокой скоростью приобретения данных, датчик может быть направлен на область, в которой детектирована аномалия, или может быть «увеличен масштаб изображения датчика» в этой области. Подобным образом, датчик 74 может быть выполнен с возможностью просмотра области либо в «контрольном режиме», либо также в режиме с высокой скоростью передачи данных.

[0030] Хотя настоящее изобретение было описано со ссылкой на предпочтительные варианты осуществления, специалистам в данной области техники следует понимать, что могут быть выполнены изменения в форме и деталях, не выходя за рамки сущности и объема настоящего изобретения. При использовании здесь, датчики окружающей среды предпочтительно выполнены с возможностью обеспечения выходных данных, имеющих некоторый профиль. Профиль может быть множеством пикселов, таких как пикселы, которые используются для изображения, множеством значений амплитуды или магнитуды, таким как дискретизированные выходные данные акустического датчика, или может быть спектральным контентом, таким как контент от акустического датчика или датчика изображения. В режиме большой мощности, генератор 62 синхронизирующих импульсов может функционировать с более высокой частотой, таким образом, чтобы контроллер 34 функционировал с более высокой скоростью обработки. При использовании здесь, термин «аномалия» включает в себя фактическую аномалию, приближающуюся аномалию, а также вероятную аномалию. Вероятная аномалия включает в себя аномалию, которая более вероятно возникнет, чем не возникнет. Однако, порог для того, что образует понятие «вероятный», может быть выбран по желанию.

Источник поступления информации: Роспатент

Показаны записи 1-2 из 2.
20.11.2015
№216.013.9340

Система и способ анализа радиочастотного спектра точки доступа и устройства беспроводной сенсорной сети

Изобретение относится к технике беспроводной связи и может быть использовано для измерения и анализа радиочастотной (РЧ) помехи, которая имеет место вблизи и внутри ячеистой сети беспроводного полевого устройства. Централизованный программный модуль (CSWM) собирает и анализирует значения от...
Тип: Изобретение
Номер охранного документа: 0002569314
Дата охранного документа: 20.11.2015
09.06.2018
№218.016.5bce

Акустическое обнаружение в технологических средах

Использование: для акустических измерений на промышленных предприятиях. Сущность изобретения заключается в том, что акустическая измерительная система для объекта производственного процесса содержит: акустический передатчик, установленный на объекте производственного процесса, причем упомянутый...
Тип: Изобретение
Номер охранного документа: 0002655707
Дата охранного документа: 29.05.2018
+ добавить свой РИД