×
24.05.2019
219.017.5f6c

Результат интеллектуальной деятельности: СПОСОБ ИСПЫТАНИЯ ПЛОСКИХ ОБРАЗЦОВ НА ИЗГИБ

Вид РИД

Изобретение

№ охранного документа
0002688611
Дата охранного документа
21.05.2019
Аннотация: Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб. Сущность: осуществляют предварительное условное деление образца по длине на участки, закрепление концов образца на опоре, выполненной в виде замкнутой рамы с двумя подвижными распорками. После замера прогиба от равномерно распределенной нагрузки на образец, не изменяя величину общей нагрузки на образец, осуществляют перераспределение нагрузки по участкам образца. После каждого перераспределения нагрузки, замеряют прогиб образца до стабилизации прогиба. При увеличении нагрузки на образец, нагрузку распределяют по участкам равномерно. Для перераспределения нагрузки по участкам образца на всех этапах испытаний, нагрузку на участке рассчитывают, принимая во внимание прогиб образца и месторасположение участка на длине образца. Технический результат: возможность моделировать нагрузки, действующие на пластины обшивки корпусов судов в реальных условиях эксплуатации для исследования деформирования пластин. 2 ил.

Изобретение относится к испытательной технике, а именно к способам испытаний плоских образцов на изгиб и может найти применение, например, при исследовании деформирования пластин обшивки, работающих в составе перекрытий корпусов судов при восприятии реальных эксплуатационных нагрузок.

Известно приспособление для испытания пластинчатых образцов на коррозию под напряжением (Авторское свидетельство №355546, МПК G01N 17/00, G01N 3/22, G01N 3/20, опубл. 16.10.1972 г.) методом постоянной деформации при изгибе, содержащее корпус в виде скобы с опорными плоскостями для концов образца и нажимной винт, расположенный в центре скобы, снабженное устройствами для прижатия концов образца к опорным плоскостям, которые с целью скручивания образца повернуты в противоположные стороны вокруг установочной оси скобы по отношению к плоскости, перпендикулярной оси нажимного винта.

Недостатком данного приспособления является низкая производительность, а также то обстоятельство, что приспособление не позволяет исследовать изгиб с одновременным действием осевой нагрузки (сложный изгиб).

Известно устройство для коррозионных испытаний образцов под напряжением (Авторское свидетельство №340931, МПК G01N 3/08, G01N 17/00, опубл. 05.06.1972 г.), содержащее корпус, на котором установлены опоры со вставками для закрепления концов образцов и механизм нагружения образцов продольным изгибом, причем корпус выполнен в виде стержня с резьбовыми концами, а механизм нагружения - в виде гаек.

Недостатком данного устройства является то, что нагружение осуществляется лишь продольной силой, при этом невозможно проведение испытаний в условиях сложного изгиба.

Известен способ испытаний плоских образцов на изгиб (Авторское свидетельство №1128143, МПК G01N 3/20, опубл. 07.12.1984 г.), заключающийся в том, что концы образцов закрепляют на опоре, выполненной в виде П-образной скобы, изгибают и определяют величину прогиба, причем с целью расширения возможностей проведения испытаний в условиях сложного изгиба, концы образцов жестко закрепляют на плоских поверхностях ветвей скобы на различном расстоянии от ее перекладины перпендикулярно оси симметрии скобы и изменяют расстояние между ветвями последней.

Данный способ обладает недостатком, заключающимся в том, что в процессе испытания образца его коэффициент распора остается постоянной величиной, зависящей от места установки образца на скобе перед началом испытаний. При этом за счет вращения винта можно лишь задавать некоторое фиксированное укорочение распорной конструкции, что позволяет моделировать смещение кромок опорного контура пластины вследствие изгиба судового перекрытия. Однако в практике эксплуатации судовых конструкций приходится сталкиваться с задачами, когда коэффициент распора пластины непрерывно меняется в процессе эксплуатации, а интенсивность нагрузки изменяется по длине пролета и является переменной в процессе нагружения, что не может быть смоделировано при помощи данного способа испытаний плоских образцов на изгиб.

В качестве ближайшего аналога принят способ испытания плоских образцов на изгиб (RU2533999, МПК G01N 3/20, опубл. 27.11.2014 г.), заключающийся в том, что концы образцов закрепляют на опоре, изгибают и определяют величину прогиба в условиях сложного изгиба, причем опора выполняется в виде замкнутой рамы с двумя подвижными распорками и коэффициент распора является переменным в процессе нагружения.

Данный способ обладает существенным недостатком, заключающимся в том, что он не позволяет моделировать действие на судовые пластины нагрузки с падающей интенсивностью, изменяющейся в процессе нагружения. К таким нагрузкам относится, например, ледовая нагрузка, под действием которой судовая пластина прогибается и ее средняя часть оказывается менее загруженной, чем прилегающие к опорным сечениям участки [Бураковский Е.П., Бураковский П.Е., Концедаева Ж.Г. Учет изменения степени недогрузки пластин при их деформировании в контактной задаче // Вестник Астраханского государственного технического университета. Серия Морская техника и технология - 2012 - №2 - С. 9-17]. При этом с ростом нагрузки и увеличением прогибов пластины падение интенсивности нагрузки в середине пролета становится более выраженным, а при определенных условиях средняя часть пролета пластины может быть незагруженной. Для экспериментального исследования подобных явлений требуется способ испытаний образцов на сложный изгиб, позволяющий моделировать нагрузку, интенсивность которой изменяется по длине пролета образца и зависит от его прогиба.

Изобретение решает задачу расширения возможностей испытаний образцов на сложный изгиб, позволяя моделировать нагрузки при проведении экспериментальных исследований деформирования пластин обшивки корпусов судов, действующие на них в реальных условиях эксплуатации, за счет возможности учета падения интенсивности нагрузки в середине пролета и изменения степени ее падения в процессе нагружения.

Для решения поставленной задачи в способе испытания плоских образцов на изгиб, включающем закрепление концов образца на опоре, выполненной в виде замкнутой рамы с двумя подвижными распорками, поэтапный изгиб образца с изменением коэффициента распора перед приложением нагрузки, разгрузку и определение величины остаточного прогиба в условиях сложного изгиба, предлагается предварительно образец условно разделить по длине на участки, и на первом этапе испытаний, после замера прогиба от равномерно распределенной нагрузки на образец, не изменяя величину общей нагрузки на образец, осуществлять перераспределение нагрузки по участкам образца, каждый раз замеряя прогиб образца до стабилизации прогиба, причем, на втором и последующих этапах, при увеличении нагрузки на образец, нагрузку распределяют по участкам равномерно, а для перераспределения нагрузки по участкам образца на всех этапах испытаний, нагрузку Qi (Н) на участке рассчитывают, принимая во внимание прогиб образца и месторасположение участка на длине образца, по формуле:

где q0 - интенсивность равномерно распределенной нагрузки при отсутствии прогибов образца, Н/м;

- рабочая длина образца, м;

N- количество участков на образце;

kγ - коэффициент пропорциональности между прогибом образца и коэффициентом недогрузки у, характеризующим падение интенсивности нагрузки в пролете, м-1;

ƒ- прогиб образца в середине пролета, м;

i - номер участка.

В предлагаемом техническом решении усилие каждого из гидроцилиндров, используемых для нагружения образца, регулируют в зависимости от его месторасположения на длине образца и прогиба образца.

На прилагаемых чертежах изображено:

на фиг. 1 - установка для осуществления предлагаемого способа;

на фиг. 2 - схема нагружения образца.

На графических материалах приняты следующие обозначения:

1 - основание;

2 - опора, выполненная в виде замкнутой рамы;

3 - индикатор часового типа;

4 -гидроцилиндр;

5 - образец;

6 - подвижная распорка;

7 - пуансон;

8 - опора гидроцилиндров;

Q1, Q2, Qi, QN - нагрузка, прикладываемая к соответствующему участку образца посредством гидроцилиндра, Н;

N- количество участков, на которые разбивается образец;

q0 - интенсивность равномерно распределенной нагрузки при отсутствии прогибов образца, Н/м;

q(x) - интенсивность внешней нагрузки, изменяющаяся по длине образца и подлежащая моделированию, Н/м;

- рабочая длина образца, м;

Т - продольное усилие в образце, Н;

ƒ - прогиб образца в середине пролета, м.

Установка для осуществления предлагаемого способа испытания плоских образцов на изгиб содержит основание 1 с закрепленной на нем опорой 2 для крепления образцов 5, выполненной в виде замкнутой рамы. Образцы нагружают установленными на опоре 8 гидроцилиндрами 4 через пуансоны 7, создаваемые гидроцилиндрами 4 усилия регулируют в зависимости от их месторасположения на длине образца 5 и его прогиба, который замеряют индикатором 3. При помощи горизонтального перемещения подвижных распорок 6 изменяют податливость в горизонтальной плоскости длинных сторон опоры 2, выполненной в виде рамы, на которые опирается образец 5, при этом изменяется коэффициент распора образца 5.

Способ испытания плоских образцов на изгиб осуществляют следующим образом. Концы образца 5 жестко закрепляют, например, путем точечной сварки, на плоских поверхностях длинных сторон опоры 2, выполненной в виде замкнутой рамы. Перемещением подвижных распорок 6 можно изменять жесткость в горизонтальной плоскости длинных сторон рамы, на которые опирается образец. Указанная жесткость характеризуется коэффициентом распора

где

Kр - коэффициент распора;

- фиктивная площадь сечения «жестких связей», создающих распор, м2;

- площадь поперечного сечения образца, м2.

Фиктивная площадь сечения «жестких связей», создающих распор, при испытании образцов согласно предлагаемому способу, определяется так же, как и в конструкции ближайшего аналога

где

- рабочая длина образца, м;

с - расстояние от образца до подвижной распорки, м;

- расстояние от образца до боковой стороны опоры, выполненной в виде замкнутой рамы, м;

I - момент инерции поперечного сечения относительно нейтральной оси при изгибе в горизонтальной плоскости длинной стороны опоры 2, выполненной в виде замкнутой рамы, м4.

Для моделирования реальных эксплуатационных нагрузок с падающей интенсивностью, действующих на судовые пластины, выражение для интенсивности нагрузки, действующей на образец, в соответствии с источником [Бураковский Е.П., Бураковский П.Е., Концедаева Ж.Г. Учет изменения степени недогрузки пластин при их деформировании в контактной задаче // Вестник Астраханского государственного технического университета. Серия Морская техника и технология. - 2012 - №2 - С. 9-17.] должно иметь вид:

где

- рабочая длина образца, м;

- коэффициент недогрузки, который характеризует падение интенсивности нагрузки в пролете;

q0 - интенсивность равномерно распределенной нагрузки при отсутствии прогибов образца, Н/м;

q1 - максимальное значение интенсивности нагрузки, распределенной по косинусоидальному закону, и характеризующей изменение нагрузки по длине образца, Н/м.

Коэффициент недогрузки у определяется выражением

γ=kγ⋅ƒ,

где

kγ - коэффициент пропорциональности между прогибом образца и коэффициентом недогрузки у, характеризующим падение интенсивности нагрузки в пролете, м-1;

ƒ - прогиб образца в середине пролета, м.

При этом если γ≤1, то нагрузка распределена по всей длине образца 5, но с падающей интенсивностью в средней части пролета. Если γ>1, то средняя часть образца 5 остается без нагрузки.

В предлагаемом способе испытания плоских образцов на изгиб для моделирования нагрузки с падающей интенсивностью, описываемой приведенным выше выражением, образец 5 условно делят на N участков, а нагрузку, прикладываемую к каждому участку, определяют как равнодействующую нагрузки с падающей интенсивностью, действующей на данном участке. При этом точность моделирования нагрузки с падающей интенсивностью, изменяющейся по косинусоидальному закону, повышается с увеличением числа участков N, на которые делят образец 5.

Нагружение образца 5 осуществляют поэтапно. На первом этапе испытаний к образцу 5 со стороны всех гидроцилиндров 4 через пуансоны 7 прикладывают одинаковое усилие, соответствующее действию на образец 5 равномерно распределенной нагрузки. Под действием приложенного усилия образец 5 прогибается, и замер его полного прогиба осуществляют при помощи индикатора 3, после чего осуществляют перераспределение нагрузки по участкам образца, выполняя корректировку усилия Qi (Н), создаваемого каждым из гидроцилиндров 4, согласно формуле

где q0 - интенсивность равномерно распределенной нагрузки при отсутствии прогибов образца, Н/м;

- рабочая длина образца, м;

N - количество участков, на которые разбивается образец;

kγ - коэффициент пропорциональности между прогибом образца и коэффициентом недогрузки у, характеризующим падение интенсивности нагрузки в пролете, м-1;

ƒ - прогиб образца в середине пролета, м;

i - номер участка.

При этом суммарное усилие со стороны всех гидроцилиндров 4, действующих на образец 5, должно оставаться неизменным и равным . В результате корректировки усилий, создаваемых гидроцилиндрами 4, прогиб образца 5 изменится, поэтому должна быть выполнена повторная корректировка усилий, прикладываемых к образцу 5 со стороны каждого из гидроцилиндров 4 по указанной выше формуле. Процесс повторяют, пока индикатор 3 после очередной корректировки усилий фиксирует изменение прогиба образца 5 до стабилизации прогиба образца 5.

На втором этапе испытаний увеличивают нагрузку на образец, распределяя нагрузку по участкам равномерно, для чего усилие, создаваемое каждым из гидроцилиндров, увеличивают на величину ΔQ, в результате чего суммарная нагрузка на образец 5 возрастет на ΔQ⋅N. После этого повторяют описанный выше процесс перераспределения нагрузки на участках образца, корректируя усилия, создаваемые каждым из гидроцилиндров 4, до достижения стабилизации прогибов образца 5. Далее осуществляют следующий этап увеличения нагрузки и т.д. После разгрузки образца производят замер остаточного прогиба образца 5 при помощи индикатора 3.

Предложенный способ испытания плоских образцов на изгиб позволяет получить важные экспериментальные результаты, необходимые при проектировании судовых корпусных конструкций, в частности бортовых перекрытий судов. Условия работы судовых пластин, входящих в состав этих конструкций, характеризуются тем, что под действием контактных нагрузок (например, ледовых), прогиб пластины растет и большую часть нагрузки начинают воспринимать участки пластины, находящиеся в районе ее опор, а центральная часть пластины при этом частично разгружается. При определенных условиях, когда коэффициент недогрузки у, характеризующий падение интенсивности нагрузки в пролете, превышает единицу, средняя часть пластины оказывается вообще не загруженной согласно источнику [Бураковский Е.П., Бураковский П.Е., Концедаева Ж.Г. Учет изменения степени недогрузки пластин при их деформировании в контактной задаче // Вестник Астраханского государственного технического университета. Серия Морская техника и технология.- 2012 - №2 - С. 9-17]. Учет этого обстоятельства становится возможным при реализации предлагаемого способа испытания плоских образцов на изгиб.

Таким образом, изобретение позволяет проводить испытания в условиях сложного изгиба с переменным в процессе нагружения коэффициентом распора при действии нагрузки с падающей интенсивностью, изменяющейся в процессе нагружения, в отличие от испытаний, описанных в ближайшем аналоге. Предлагаемый способ позволяет выполнять экспериментальные исследования деформирования пластин обшивки, работающих в составе перекрытий корпусов судов при восприятии реальных эксплуатационных нагрузок, что позволит избежать ошибок при проектировании судовых корпусных конструкций.

Источник поступления информации: Роспатент

Показаны записи 41-50 из 67.
07.06.2019
№219.017.74cf

Бортовое перекрытие

Изобретение относится к области судостроения и может быть использовано при постройке и ремонте бортовых конструкций корпусов судов. Бортовое перекрытие содержит наружную обшивку, подкрепленную шпангоутами, на полках которых закреплены струны, расположенные на заданном расстоянии друг от друга....
Тип: Изобретение
Номер охранного документа: 0002690784
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7506

Днищевое перекрытие судна

Изобретение относится к области судостроения и может быть использовано при постройке и ремонте днищевых конструкций корпусов судов. Днищевое перекрытие судна содержит наружную обшивку, настил второго дна с продольными ребрами жесткости настила второго дна, стрингеры, вертикальный киль, флоры,...
Тип: Изобретение
Номер охранного документа: 0002690658
Дата охранного документа: 05.06.2019
06.07.2019
№219.017.a717

Днищевое перекрытие судна

Изобретение относится к области судостроения и может быть использовано при постройке и ремонте днищевых конструкций корпусов судов. Днищевое перекрытие судна содержит наружную обшивку, настил второго дна с продольными ребрами жесткости, стрингеры, вертикальный киль, флоры, продольные балки и...
Тип: Изобретение
Номер охранного документа: 0002693725
Дата охранного документа: 04.07.2019
19.07.2019
№219.017.b680

Днищевое перекрытие судна

Изобретение относится к области судостроения и может быть использовано при постройке и ремонте днищевых конструкций корпусов судов. Днищевое перекрытие судна содержит наружную обшивку, настил второго дна с продольными ребрами жесткости настила второго дна, стрингеры, вертикальный киль, флоры,...
Тип: Изобретение
Номер охранного документа: 0002694705
Дата охранного документа: 16.07.2019
17.10.2019
№219.017.d6e8

Обогатительный желоб

Изобретение относится к обогащению полезных ископаемых и может быть использовано для разделения твердых частиц по плотности в жидкой среде, главным образом при извлечении сравнительно легких твердых частиц, например янтаря. Обогатительный желоб включает загрузочную часть, связанную с наклонным...
Тип: Изобретение
Номер охранного документа: 0002703033
Дата охранного документа: 15.10.2019
14.11.2019
№219.017.e178

Способ формообразования кабошонов со сложнопрофильной поверхностью из полудрагоценных камней и устройство для его осуществления

Изобретение относится к ювелирной промышленности и может быть использовано при обработке полудрагоценных и поделочных материалов, в частности кабошонов со сложнопрофильной поверхностью. Обработку ведут торцевой поверхностью вращающегося абразивного круга. Заготовке сообщают формообразующее...
Тип: Изобретение
Номер охранного документа: 0002705828
Дата охранного документа: 12.11.2019
05.03.2020
№220.018.0902

Рыбный формованный полуфабрикат

Изобретение относится к пищевой промышленности. При изготовлении полуфабриката используют фарш рыбный, порошок из выжимок яблок, или смородины, или моркови, лук репчатый свежий очищенный, масло и соль поваренную. Исходные компоненты используют при определенном соотношении. Изобретение позволяет...
Тип: Изобретение
Номер охранного документа: 0002715868
Дата охранного документа: 03.03.2020
07.03.2020
№220.018.0a55

Гидротранспорт пульпы

Изобретение относится к горнодобывающей промышленности, в частности к подъему и транспортированию пульпы при разработке месторождений полезных ископаемых, в которых нежелательно дробление целевого продукта, например при разработке месторождения янтаря и соответственно при гидротранспорте...
Тип: Изобретение
Номер охранного документа: 0002716074
Дата охранного документа: 05.03.2020
19.03.2020
№220.018.0d74

Бортовое перекрытие

Изобретение относится к области судостроения и может быть использовано при постройке и ремонте бортовых конструкций корпусов судов. Бортовое перекрытие состоит из обшивки, балок набора и подкрепляющих элементов, каждый из которых соединяет полку балки набора с основаниями стенок смежных с ней...
Тип: Изобретение
Номер охранного документа: 0002716890
Дата охранного документа: 17.03.2020
17.04.2020
№220.018.1551

Способ обработки рыбной чешуи для получения функционального напитка, функциональной пищевой добавки и косметического скраба

Изобретение относится к пищевой промышленности. Предложен способ обработки рыбной чешуи, включающий очистку чешуи, термическую обработку в жидкости, фракционирование, высушивание и измельчение. Термическую обработку рыбной чешуи осуществляют в жидкости, содержащей по меньшей мере один вид...
Тип: Изобретение
Номер охранного документа: 0002718862
Дата охранного документа: 15.04.2020
Показаны записи 41-44 из 44.
16.05.2023
№223.018.6266

Система предотвращения брочинга

Изобретение относится к области судостроения и может быть использовано при постройке и модернизации судов. Система предотвращения брочинга включает в себя плавучий якорь, который содержит оболочку из гибкого материала, связанную со складным каркасом, прикрепленным к буксирной тяге и бую, а...
Тип: Изобретение
Номер охранного документа: 0002781020
Дата охранного документа: 04.10.2022
16.05.2023
№223.018.6275

Способ контроля общей прочности корпуса судна в процессе эксплуатации

Изобретение относится к области судостроения и может быть использовано при оценке прочности корпусов судов в процессе эксплуатации. Контроль общей прочности корпуса судна в процессе эксплуатации, основанный на определении изгибающего момента в корпусе судна в условиях захвата волной носовой...
Тип: Изобретение
Номер охранного документа: 0002781023
Дата охранного документа: 04.10.2022
20.05.2023
№223.018.6534

Лопастный водоходный движитель транспортного средства

Изобретение относится к транспортному машиностроению, а именно к плавающим транспортерам, и может быть использовано при разработке специальных гидродинамических устройств, улучшающих водоходные свойства транспортеров. Лопастный водоходный движитель содержит корпус и установленные на нем...
Тип: Изобретение
Номер охранного документа: 0002742846
Дата охранного документа: 11.02.2021
20.05.2023
№223.018.6549

Способ контроля остойчивости судна

Изобретение относится к судостроению, в частности к способам контроля остойчивости судна в условиях эксплуатации, и может быть использовано при создании навигационных экспертных систем для контроля остойчивости судна на встречном волнении в условиях захвата волной носовой оконечности. Способ...
Тип: Изобретение
Номер охранного документа: 0002740617
Дата охранного документа: 15.01.2021
+ добавить свой РИД