×
24.05.2019
219.017.5dda

Результат интеллектуальной деятельности: Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области экспериментальной стендовой базы измерения характеристики отражения материалов - двунаправленной коэффициента яркости, необходимого при решении задач определения полей яркости инфракрасного излучения тел сложной формы. Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов содержит расположенные на поворотной платформе источник облучения и зеркальную оптическую систему облучения образца с обеспечением фокусировки потока, зеркальную оптическую систему сбора и фокусировки отраженного потока, черный экран с образцом и приемник излучения, источник облучения и приемник излучения с возможностью регулирования телесных углов соответственно облучающего и принимаемого потоков излучения. При этом черный экран с образцом установлен на поворотном оптическом столике, выполненном поворотным и закрепленным на одной оси с поворотной платформой источника облучения, средства измерений спектральных и спектрозональных величин размещены после системы сбора и фокусировки отраженного потока с установкой светоделителя в точке пересечения их взаимно перпендикулярных оптических осей. Технический результат - получение информации о спектральном и спектрозональном двунаправленном коэффициенте яркости материалов с любыми направленными отражательными свойствами на различных углах облучения и наблюдения. 2 ил.

Изобретение относится к области экспериментальной базы измерений характеристики отражения материалов - двунаправленного коэффициента яркости, который представляет собой отношение яркости исследуемого образца материала к яркости диффузного эталона при их одинаковом облучении источником инфракрасного (ИК) излучения при различных углах падения (ψ) и наблюдения (θ) (фиг. 1). Информация о коэффициенте яркости необходима при решении задач определения полей яркости эффективного излучения тел сложной формы при наличии внешних источников облучения.

Известно устройство для измерений двунаправленных отражательных характеристик материалов - гониофотометр (И.А. Непогодин, К.И. Мальчонок, Д.Т. Тиранов, В.А. Невзоров. Оптика и спектроскопия. 1966. Т. 20, вып. 4, С. 701-708). Облучение образца материала здесь осуществляется с использованием когерентного источника излучения, т.е. на одной длине волны. Недостатком устройства является невозможность получения спектральных и спектрозональных зависимостей отражательных характеристик.

Из известных устройств для измерения коэффициента яркости материалов в ИК-диапазоне длин волн наиболее близким по технической сути к предлагаемому и принятым за прототип является устройство для измерения коэффициента яркости (В.В. Витковский, А.Б. Корнилов и др. Оптический журнал. 2002 г. т. 70. №: 6 С. 27-32), которое включает источник облучения на поворотной платформе, оптические системы облучения образца и сбора отраженного излучения на основе сферических зеркал, образец с черным экраном, монохроматор и приемник излучения. Основным недостатком этого устройства является ограниченность применения, связанная с:

- возможностью измерений только при одном угле отражения,

- отсутствием возможности измерения спектрозональных коэффициентов яркости.

Задачей и техническим результатом изобретения является создание устройства для измерения коэффициента яркости материалов в инфракрасном диапазоне длин волн, позволяющего проводить измерения на различных углах не только облучения, но и наблюдения, с определением его спектральных и дополнительно спектрозональных характеристик.

Решение задачи и указанный технический результат достигаются тем, что в устройстве для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов, содержащем расположенные на поворотной платформе источник облучения и зеркальную оптическую систему облучения образца с обеспечением фокусировки потока, систему сбора и фокусировки отраженного потока, черный экран для размещения образца, монохроматор и приемник излучения, источник облучения и монохроматор выполнены с возможностью регулирования телесных углов, отличающееся тем, что черный экран установлен на поворотном оптическом столике, ось которого совпадает с осью поворотной платформы, дополнительно содержит спектрозональный приемник излучения и светоделитель, расположенные на выходе системы сбора и фокусировки отраженного потока, оптическая ось спектрозонального приемника излучения перпендикулярна оптической оси монохроматора, а светоделитель установлен в точке пересечения их оптических осей.

Устройство для измерения коэффициента яркости в инфракрасном диапазоне длин волн (Δλ=1-25 мкм) поясняется фиг. 1-2, на которых представлены:

на фиг. 1- схема падающего и отраженного потоков излучения при определении двунаправленного коэффициента яркости материалов;

на фиг. 2 - оптическая схема предлагаемого устройства;

Предлагаемое устройство (фиг. 2) содержит поворотную платформу 1, на которой установлены источник ИК облучения 2, зеркала 3, 5, 6 и диафрагма 4. Сферическое зеркало 3 служит для фокусировки потока на диафрагме 4, которая регулирует телесный угол облучателя. Сферическое зеркало 5 собирает излучение источника и формирует параллельный поток, падающий на плоское зеркало 6 и далее на образец 8, который установлен на поворотном оптическом столике 7 с черным экраном 9. Поворотная платформа 1 и оптический столик 7 поворачиваются независимо друг от друга вокруг общей вертикальной оси О, что позволяет устанавливать необходимые углы падения (ψ) и отражения потоков (θ). После отражения от образца 8 параллельный пучок через зеркальный конденсор 18, включающий плоские зеркала 10 и 12, а также сферическое зеркало 11, направляется на светоделитель 13. При этом сферическое зеркало 11 установлено так, что фокусирует поток и на входную щель 16 монохроматора 15, и на спектрозональный фотоприемник излучения 14. Разделение потоков, направляемых на монохроматор 15 и спектрозональный приемник излучения 14, осуществляют с использованием светоделителя 13. После монохроматора измеряемый поток излучения поступает на фотоприемное устройство спектрометра 17.

Обеспечение параллельности падающего на образец потока осуществляется за счет выбора геометрии расположения основных элементов оптической системы устройства при условии минимизации угла между направлением потока и основной оптической осью. Кроме того, наряду с решением проблемы параллельности потока рассматривалась проблема учета дифракции на малых отверстиях, решение которой осуществляется за счет регулирования диафрагмы 4 (Фиг.2).

Использование сферических зеркал 3 и 5 в оптической системе облучения образца и сферического зеркала 11 в оптической системе сбора отраженного излучения позволяет избежать хроматической аберрации линз, а сферической аберрацией при условиях, когда потоки близки к параксиальным, можно пренебречь. Это позволяет использовать для юстировки системы в инфракрасном диапазоне юстировку, выполняемую в видимом диапазоне. В то же время применение зеркал с алюминиевым покрытием с высоким коэффициентом отражения (ρ≥0,95) в ИК области не приведет к увеличению потерь по сравнению с линзами.

Черный экран 9, по размерам превышающий образец 8, необходим для поглощения облучаемого потока, не попавшего в контур образца. Поэтому его расположение за образцом позволяет осуществлять выбор размеров образца из условия непревышения ими поперечных сечений падающих и отраженных потоков при достаточности для формирования общепринятых оптических свойств материала. В этом случае исчезает необходимость подбора размеров образца по характеристикам приемника.

В рамках представленного устройства (фиг. 2) измерения осуществляются следующим образом. Поток излучения от источника 2 с помощью сферического зеркала 3 попадает на регулируемую по ширине диафрагму 4 и далее на сферическое зеркало 5. Сформированный зеркалом 5 параллельный поток направляется под углом падения на исследуемый образец 8, расположенный на оптическом столике 7 с черным экраном 9. Отраженный от образца под углом 0 поток через зеркало 10 собирается сферическим зеркалом 11 и направляется на зеркало 12, после которого разделенные светоделителем 13 два потока фокусируются: один на входном отверстии 16 монохроматора 15 для фотоприемного устройства спектрометра 17, а другой на спектрозональный фотоприемник 14.

Устройство обеспечивает измерение спектрального βλ(ψ,θ) и спектрозонального βΔλ(ψ,θ) коэффициента яркости в ИК-диапазоне длин волн при различных углах падения (ψ) и отражения (θ):

Высокая точность определения спектрозональных коэффициентов яркости по соотношению (2) обеспечивается при условии постоянства в рабочем диапазоне длин волн: спектрального коэффициента отражения образца материала, спектральной характеристики фотоприемника спектрозонального приемника излучения и суммарного спектрального коэффициента пропускания объектива и фильтров спектрозонального приемника излучения.

В предлагаемом устройстве регулировка телесных углов и осуществляется посредством изменения размеров диафрагмы 4 и входной щели 16 монохроматора 15.

Таким образом, создано устройство измерений коэффициента яркости в инфракрасном диапазоне длин волн, позволяющее обеспечить проведение измерений на различных углах не только облучения, но и наблюдения, с определением спектральных и дополнительно спектрозональных характеристик металлических, диэлектрических и композитных материалов с любыми направленными оптическими свойствами.

Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов, содержащее расположенные на поворотной платформе источник облучения и зеркальную оптическую систему облучения образца с обеспечением фокусировки потока, систему сбора и фокусировки отраженного потока, черный экран для размещения образца, монохроматор и приемник излучения, источник облучения и монохроматор выполнены с возможностью регулирования телесных углов, отличающееся тем, что черный экран с образцом установлен на поворотном оптическом столике, ось которого совпадает с осью поворотной платформы, дополнительно содержит спектрозональный приемник излучения и светоделитель, расположенные на выходе системы сбора и фокусировки отраженного потока, оптическая ось спектрозонального приемника излучения перпендикулярна оптической оси монохроматора, а светоделитель установлен в точке пересечения их оптических осей.
Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов
Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов
Источник поступления информации: Роспатент

Показаны записи 71-80 из 255.
10.08.2015
№216.013.693d

Система защиты силовых композитных элементов авиационных конструкций

Изобретение относится к области авиации и касается разработки силовых авиационных конструкций крыла и фюзеляжа из полимерных композиционных материалов (КМ) и их защите. Система защиты силовых композитных элементов содержит внешнюю и внутреннюю обшивки, промежуточный слой защитного наполнителя....
Тип: Изобретение
Номер охранного документа: 0002558494
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.696a

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области авиации. Аэродинамический профиль несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями верхней и нижней частей...
Тип: Изобретение
Номер охранного документа: 0002558539
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be7

Аэродинамический профиль поперечного сечения несущей поверхности

Изобретение относится к области винтов винтокрылых летательных аппаратов. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной В. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между...
Тип: Изобретение
Номер охранного документа: 0002559181
Дата охранного документа: 10.08.2015
10.09.2015
№216.013.75f2

Способ определения угла атаки отрыва потока с гладких поверхностей моделей

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах, где требуется определение угла атаки начала отрыва потока и выявление зон отрыва потока с гладких поверхностей испытуемых моделей. В способе по одному из вариантов определения...
Тип: Изобретение
Номер охранного документа: 0002561783
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75f3

Способ измерения числа маха в аэродинамической трубе

Изобретение относится к измерительной технике, в частности может быть использовано в методиках измерений, предназначенных для аттестации аэродинамических труб и получения аэродинамических характеристик тестовых моделей в целях последующего их использования при аттестации алгоритмов и программ,...
Тип: Изобретение
Номер охранного документа: 0002561784
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.75f5

Способ защиты полых изделий от превышения заданного уровня внутреннего избыточного давления газа

Изобретение относится к испытательной технике, в частности к установкам для ресурсных испытаний фюзеляжей летательных аппаратов нагрузками, создаваемыми внутренним избыточным давлением сжатого воздуха. Техническим результатом изобретения является многократное снижение конструктивных размеров...
Тип: Изобретение
Номер охранного документа: 0002561786
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7762

Способ определения герметичности при испытаниях на прочность

Изобретение относится к испытательной технике и может быть использовано для измерения степени герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например, фюзеляжей летательных аппаратов. В заявленном способе определения герметичности...
Тип: Изобретение
Номер охранного документа: 0002562151
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7764

Способ определения полей числовой концентрации дисперсной фазы в аэрозольном потоке и устройство для его реализации

Изобретение относится к области исследования многофазных потоков, в частности к технике определения параметров твердой, жидкой и газообразной фаз потока оптическими средствами, и может быть использовано для определения концентрации и массовой плотности дисперсной фазы в пространстве, а также...
Тип: Изобретение
Номер охранного документа: 0002562153
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7766

Устройство для определения герметичности при испытаниях на прочность

Изобретение относится к испытательной технике и может быть использовано для измерения герметичности, т.е. утечек из полых изделий при испытании их на прочность внутренним избыточным давлением, например при испытаниях фюзеляжей летательных аппаратов. Техническим результатом является возможность...
Тип: Изобретение
Номер охранного документа: 0002562155
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.77df

Способ исследования состояния течения в пограничном слое

Изобретение относится к области экспериментальной аэродинамики и может быть использовано преимущественно при исследованиях аэродинамического обтекания моделей в аэродинамических трубах. Пограничный слой на обтекаемых аэродинамических поверхностях может иметь ламинарное или турбулентное...
Тип: Изобретение
Номер охранного документа: 0002562276
Дата охранного документа: 10.09.2015
Показаны записи 1-1 из 1.
24.07.2018
№218.016.749d

Способ и устройство для измерения направленного коэффициента инфракрасного излучения материала

Изобретение относится к области оптических измерений и касается способа измерения направленного коэффициента инфракрасного излучения материала при различных температурах. Способ включает в себя размещение образца и эталонного излучателя в вакуумной термокамере, их нагрев, дискретный поворот и...
Тип: Изобретение
Номер охранного документа: 0002662053
Дата охранного документа: 23.07.2018
+ добавить свой РИД