×
24.05.2019
219.017.5dcc

Результат интеллектуальной деятельности: Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин помещают в ультразвуковой диспергатор с ацетоном, далее погружают в заливочную эпоксидную смолу, сушат в вакууматоре в течение 24 ч при 60°C, после высушивания шлифуют шлифовальной бумагой вначале с дисперсностью 800, затем с дисперсностью 1200, далее полируют на сукне с алмазной пастой с зернистостью порошка в пасте 6 мкм и на заключительном этапе подготовки напыляют наночастицами углерода. Достигаемый при этом технический результат заключается в получении высокой контрастности исследуемой поверхности образцов костной ткани человека как материала для исследования в растровом электронном микроскопе, без использования токсичных реагентов при простоте исполнения и снижении материальных, трудовых и временных затрат. 4 ил.

Изобретение относится к экспериментальной биологии и медицине и может быть использовано для изучения пространственной структуры поствитальной или пострезекционной костной ткани человека методом растровой электронной микроскопии.

Известен способ подготовки регенератов кости для исследования методом растровой микроскопии [1]. Способ включает фиксацию в 2 % растворе параформальдегида, глутарового альдегида и 0,1 % пикриновой кислоты на фосфатном буфере (рН 7,4) при температуре +4ºС в течение 48 часов, промывку, обезвоживание и заливку в аралдит по следующей схеме: 100 % ацетон + смесь аралдитов в соотношениях 3: 1, 1: 1 и 1: 3 по 12 часов в каждой смеси; смесь аралдитов без ацетона - 24 часа. Аралдитовый блок обрезали, обнажали исследуемую поверхность регенерата, которую затем полировали мелкоабразивными материалами (водостойкой абразивной бумагой Р 200, Р 400, Р 1000). Подготовленный таким образом блок (шлиф) напыляли тонким слоем серебра в ионном вакуумном напылителе IB-6 производства Японии.

Данный процесс пробоподготовки представляется достаточно длительным, занимает несколько суток, требует предварительной фиксации биологического материала, использования сложной заливочной среды. Получившийся аралдитовый блок необходимо разрезать, что требует дополнительного оборудования.

Группой исследователей под руководством Р.А. Мухамадиярова разработан способ подготовки образцов биологических тканей, в том числе содержащих различные имплантанты [2]. Способ включает фиксацию образцов в 4% растворе параформальдегида. Часть образцов, содержащих никелид титана, после фиксации раствором параформальдегида дополнительно фиксировали 2% водным раствором оксида осмия четырехвалентного в течение 12 часов. Обезвоживание образцов проводили путем последовательного помещения в растворы этилового спирта возрастающей концентрации. Обезвоженные образцы помещали в ацетон: 2 раза по 60 минут. Затем образцы выдерживали в смеси ацетона и смолы в соотношении 1:1 в течение 12 часов, после чего погружали в заливочную смолу и выдерживали в системе вакуумной импрегнации CitoVac (Struers, Дания) 12 часов. Пропитанные смолой образцы помещали в специальные формы (Fixi-Form, Struers) диаметром 25 мм для шлифовально-полировального станка TegraPol-11 (Struers, Дания), заливали свежей порцией смолы и оставляли в термостате при 37°С. Через12 часов проводили полимеризацию смолы в термостате при температуре 60°С в течение 24 час. Полученные образцы шлифовали до участка, исследование которого было необходимо произвести и полировали поверхность с использованием шлифовально-полировального станка TegraPol-11 (Struers, Дания). Шлифовку осуществляли, используя абразивные диски MDRondo (Struers) с различным размером абразивных зерен в следующем порядке: 800, 1000 и 1200 грита. Для полировки последовательно использовали диски, покрытые сукном (Struers), с различной упругостью в комбинации с суспензиями, содержащими монокристаллические алмазы (DP-SprayM, Struers). Далее шлифовали обратную сторону блоков таким образом, чтобы их плоские поверхности были параллельны. Шлифовку обратной стороны выполняли до образца, а также удаляли его неинформативные участки, чтобы добиться минимальной толщины блоков. Перед исследованием в электронном микроскопе все образцы контрастировали 2% водным раствором уранилацетата и цитрата свинца по Рейнольдсу. Затем образец промывали под струей дистиллированной воды, протирали мягкой тканью и высушивали на воздухе.

Недостатком данного способа является длительность и техническая сложность способа, необходимость фиксировать образцы, использование токсичных соединений, таких как оксид осмия четырехвалентного, уранилацетат, цитрат свинца, а также применение сложного и дорогостоящего оборудования. В Российском научном центре «Восстановительная травматология и ортопедия» имени академика Г.А. Илизарова также разработан метод подготовки образцов костной ткани к исследованию в растровом электронном микроскопе [3]. Образцы биологических тканей размером до 1 см3, выделенные из костных регенератов, фиксировали 1–3 суток в смеси 2 % растворов формальдегида и глутарового альдегида (рН 7,4) с добавлением 0,1 % пикриновой кислоты. После фиксации их последовательно отмывали в фосфатном буфере, проточной и дистиллированной воде в течение 2 часов на каждом из этапов. Затем образцы оставляли на ночь в 70 % этиловом спирте и далее дегидратировали по 2 часа в 80, 90, 96 и 100 % этиловом спирте. Далее этиловый спирт замещали этоксиэтаном, поместив образцы в смесь равных объемов растворителей (на ночь) и в этоксиэтан (на 2 часа). После этого образцы последовательно пропитывали в трех сменах смеси камфен/этоксиэтан, взятых в соотношении: 1/1, 2/1, 3/1, по 2 часа в каждой, и далее помещали на 12 часов в две смены химически чистого камфена при t = 51 °C. По окончании пропитывания образцы оставляли при комнатной температуре в особо чистых условиях до полной сублимации камфена.

Приведенные выше способы являются трудоемкими за счет многоэтапности пробоподготовки, большого количества смен рабочей среды, требуют значительных затрат материалов, притом, что такие реактивы, как этоксиэтан, соединения осмия, являются опасными, а камфен – труднодоступным.

Для подготовки биологического материала разработан способ, основанный на применении хлоридов редкоземельных элементов [4]. При осуществлении данного способа каждый образец промывали в 0,9% NaCl, затем размещали в емкость с водным изотоническим раствором одного из хлоридов редкоземельных элементов (Nd, Pr или La) или их смеси для насыщения образца контрастирующим веществом и экспонировали от 20 мин до 6 ч. Для удаления излишков раствора образцы промывались дистиллированной водой.

Фактором, ограничивающим применение этого способа для изучения структуры скелетных тканей, является тропность редкоземельных элементов к фосфатам с образованием нерастворимых соединений, что может ограничить визуализацию структурных компонентов исследуемого материала. Существенным недостатком является токсичность хлоридов редкоземельных элементов и их высокая стоимость.

Задачей изобретения является получение достоверных данных о структуре поствитальной или пострезекционной костной ткани человека путем исследования в растровом электронном микроскопе при минимальных материальных, трудовых и временных затратах.

Для этого предложен способ подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии, в котором образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин помещают в ультразвуковой диспергатор с ацетоном, далее погружают в заливочную эпоксидную смолу, сушат в вакууматоре в течение 24 часов при 60°C, после высушивания шлифуют шлифовальной бумагой вначале с дисперсностью 800, затем с дисперсностью 1200, далее полируют на сукне с алмазной пастой с зернистостью порошка в пасте 6 мкм и на заключительном этапе подготовки напыляют наночастицами углерода.

Абразивный круг, при помощи которого вырезают образцы, выполняет первичную шлифовку исследуемой поверхности. Костную заготовку охлаждают жидким азотом для предотвращения термической деструкции костной структуры и для снижения вязкости обрабатываемого материала. Помещение образцов в ультразвуковой диспергатор с ацетоном на 5 минут производят для обезжиривания и удаления мелкодисперсной пыли. Погружение в заливочную смолу и высушивание в вакууматоре в течение 24 часов при 60 °C производят с целью уменьшения времени полимеризации смолы и удаления пузырьков воздуха из образца. В качестве заливочной смолы предложена эпоксидная, характеризующаяся относительной простотой работы с ней, дешевизной и прозрачностью (не искажается изображение). Шлифовка в 2 стадии с использованием шлифовальной бумаги с дисперсностью 800 мкм, затем с дисперсностью 1200 мкм с финальной полировкой с использованием алмазной пасты с зернистостью порошка в пасте 6 мкм позволяет получить идеально гладкую поверхность образца, так как основным фактором, определяющим контрастность изображения является угол падения электронного пучка на поверхность образца, напрямую зависящий от степени неровности исследуемой поверхности. Полировка позволяет увеличить контрастность изображения, не прибегая к импрегнации ткани тяжелыми металлами. Во избежание накопления заряда на поверхности исследуемой ткани, на заключительном этапе подготовки образцы напыляют наночастицами углерода, так как исследуемая ткань, которая в условиях высокого вакуума становится изолятором, может повреждаться пучком высокоэнергетических электронов.

Новый технический результат, достигаемый заявленным способом, заключается в получении высокой контрастности исследуемой поверхности без использования токсичных реагентов при простоте исполнения и снижении материальных, трудовых и временных затрат.

Изобретение иллюстрируется рисунками, где на фиг. 1 представлен фрагмент поствитальной костной ткани околосуставной локализации из области головки плечевой кости; на фиг.2 – образец для исследования после обезжиривания, заливки в эпоксидную смолу и шлифовки с нанесенным токопроводящим слоем; на фиг.3 – структура образца трабекулярной кости, полученная растровой электронной микроскопией; на фиг.4 – структура образца костной балки, полученная растровой электронной микроскопией.

Способ опробован в ФГБУН «Институт высокотемпературной электрохимии» УрО РАН в лаборатории медицинского материаловедения и биокерамики. Для изучения забирались фрагменты поствитальной костной ткани околосуставной локализации в области головки плечевой кости на кафедре оперативной хирургии и топографической анатомии ФГБОУ ВО «Уральский государственный медицинский университет» МЗ РФ. Из искомых костных фрагментов после охлаждения жидким азотом при помощи абразивного круга вырезали образцы кубической формы объемом 1 см3. Образцы обезжиривались и очищались от абразива в ультразвуковом диспергаторе с ацетоном в течение 5 минут. Далее костные фрагменты погружали в заливочную эпоксидную смолу и высушивали в вакууматоре в течение 24 часов при 60 °C. Далее проводили шлифование в две стадии: (1) с использованием шлифовальной бумаги с дисперсностью 800; (2) с использованием шлифовальной бумаги с дисперсностью 1200. После этого образцы полировались на сукне с использованием алмазной пасты с зернистостью порошка 6 мкм. На заключительном этапе образцы напыляли наночастицами углерода. В структуре образца, представленной на фиг.3 видны костные трабекулы губчатой кости (показаны белыми стрелками). В структуре образца, представленной на фиг.4, видны элементы остеонной структуры, лакуны остеоцитов с перилакунарными межклеточными контактами (показаны черными стрелками). Изображения этих образцов содержат достоверные данные о гистоархитектонике и пространственной архитектуре костной ткани околосуставной локализации в субхондральной области.

Таким образом, предлагаемый способ подготовки образцов поствитальной или пострезекционной костной ткани человека для изучения в растровом электронном микроскопе позволяет достоверно оценивать особенности структуры костной ткани в различных режимах работы оборудования. Способ прост в исполнении, не требует больших материальных, трудовых и временных затрат.

Источники информации:

1.Ирьянов Ю.М. и др. Особенности подготовки образца регенерата кости для исследования при помощи сканирующей электронной микроскопии// Морфологические ведомости, 2010, № 1, c.

2.Мухамадияров Р.А. и др. Применение композиционного контраста для исследования биологических объектов методом сканирующей электронной микроскопии // Комплексные проблемы сердечнососудистых заболеваний, 2017, N 3, С.93-103.

3.Силантьева Т.А. и др. Подготовка образцов биологических тканей для исследования в сканирующем электронном микроскопе с использованием камфена// Фундаментальные исследования, 2015, № 2, с. 4919-4923.

4.Новиков И.А. и др. Суправитальное контрастирование лантаноидами для визуализации структуры биологических образцов на сканирующем электронном микроскопе// Гены и клетки, 2015, Т.10, №2, с.90-96.

Способ подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии, отличающийся тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин помещают в ультразвуковой диспергатор с ацетоном, далее погружают в заливочную эпоксидную смолу, сушат в вакууматоре в течение 24 ч при 60°C, после высушивания шлифуют шлифовальной бумагой вначале с дисперсностью 800, затем с дисперсностью 1200, далее полируют на сукне с алмазной пастой с зернистостью порошка в пасте 6 мкм и на заключительном этапе подготовки напыляют наночастицами углерода.
Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии
Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии
Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии
Источник поступления информации: Роспатент

Показаны записи 21-30 из 94.
20.08.2014
№216.012.ebfc

Чувствительный элемент электрохимического датчика водорода в газовых смесях

Чувствительный элемент электрохимического датчика водорода в газовых смесях. Может быть использован для измерения концентрации водорода в воздухе и в инертном газе. Чувствительный элемент электрохимического датчика водорода в газовых смесях, выполненный в виде таблетки из твердого электролита,...
Тип: Изобретение
Номер охранного документа: 0002526220
Дата охранного документа: 20.08.2014
27.10.2014
№216.013.02e5

Способ измерения кислорода в газовых средах

Использование: для измерения концентрации кислорода в газовых смесях различного состава. Сущность изобретения заключается в том, что используют ячейку с полостью, образованную кислородопроводящим твердым электролитом, на противоположных поверхностях электролита расположены электроды, включая...
Тип: Изобретение
Номер охранного документа: 0002532139
Дата охранного документа: 27.10.2014
10.01.2015
№216.013.1832

Состав шихты для изготовления оксидно-металлического инертного анода

Изобретение может быть использовано при изготовлении композиционного оксидно-металлического инертного кислородвыделяющего анода для электролитического получения металлов, в частности, алюминия. Состав шихты для изготовления указанного анода включает смесь оксидной и металлической составляющих,...
Тип: Изобретение
Номер охранного документа: 0002537622
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1833

Способ синтеза микро- и нанокомпозиционных алюминий-углеродных материалов

Изобретение относится к способу получения алюминий-углеродных композиционных материалов, которые могут найти применение в авиационной, космической и электротехнической промышленности, а также в производстве шарикоподшипников нового поколения. Способ характеризуется тем, что алюминий или...
Тип: Изобретение
Номер охранного документа: 0002537623
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1868

Способ электрохимического получения алюминий-титановой лигатуры для коррозионностойких алюминиевых сплавов

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов. Способ включает химическое активирование поверхности титана в расплавленных фторидах щелочных металлов и/или калиевом...
Тип: Изобретение
Номер охранного документа: 0002537676
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a0b

Электрохимический генератор с твердым электролитом

Изобретение относится к устройству электрохимического генератора с твердым электролитом, преимущественно для генераторов малой и средней мощности до 15÷20 кВт. Указанный генератор содержит заключенные в корпус с теплоизолирующими стенками, рабочую камеру с батареей топливных элементов, камеру...
Тип: Изобретение
Номер охранного документа: 0002538095
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fd8

Электрохимический способ получения порошка гексаборида кальция

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты. Способ характеризуется тем, что используют солевой расплав, содержащий хлорид кальция с добавками оксида кальция и...
Тип: Изобретение
Номер охранного документа: 0002539593
Дата охранного документа: 20.01.2015
10.02.2015
№216.013.2325

Способ измерения кислородосодержания и влажности газа

Изобретение относится к аналитической технике и может быть использовано для измерения кислородосодержания и влажности газов. Способ измерения кислородосодержания и влажности газа. В поток анализируемого газа помещают электрохимическую ячейку с полостью, образованную двумя дисками из...
Тип: Изобретение
Номер охранного документа: 0002540450
Дата охранного документа: 10.02.2015
27.02.2015
№216.013.2c14

Способ изготовления пористых катодных материалов на основе манганита лантана-стронция

Изобретение относится к области электротехники, а именно к способу изготовления пористых катодных материалов на основе манганита лантана-стронция, и может быть использовано для изготовления твердооксидных топливных элементов (ТОТЭ), работающих при высоких температурах. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002542752
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d53

Способ изготовления электродов электрохимических устройств с твердым электролитом

Изобретение относится к области электротехники, а именно к способу изготовления электродов электрохимических устройств с твердым электролитом. Снижение поляризационного сопротивления электрода, а также улучшение протекания электродных реакций газообмена является техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543071
Дата охранного документа: 27.02.2015
Показаны записи 21-30 из 39.
11.10.2018
№218.016.8f89

Способ моделирования внутрисуставного импрессионного перелома проксимального отдела большеберцовой кости

Изобретение относится к экспериментальной медицине, а именно к травматологии и ортопедии, и может быть применимо для изучения пато- и морфогенеза внутрисуставного импрессионного перелома и разработки способов хирургического лечения импресионного перелома эпифиза длинной трубчатой кости. Для...
Тип: Изобретение
Номер охранного документа: 0002669047
Дата охранного документа: 05.10.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
04.12.2018
№218.016.a31e

Способ производства пористых имплантатов на основе металлических материалов

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником...
Тип: Изобретение
Номер охранного документа: 0002673795
Дата охранного документа: 30.11.2018
11.01.2019
№219.016.ae63

Способ создания модели остеоартроза коленного сустава кролика травматического генеза

Изобретение относится к медицине, а именно к клинико-экспериментальной травматологии и ортопедии, и может быть использовано для моделирования посттравматического остеоартроза коленного сустава кролика. После послойного линейного разреза, проведенного перпендикулярно к суставной щели коленного...
Тип: Изобретение
Номер охранного документа: 0002676653
Дата охранного документа: 09.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
31.05.2019
№219.017.706b

Пористая структура для медицинских имплантатов

Изобретение относится к области медицины, конкретно к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно из титановых сплавов. Описан медицинский имплантат, имеющий пористую структуру, которая содержит набор сфер, соединенных между собой по границам...
Тип: Изобретение
Номер охранного документа: 0002689794
Дата охранного документа: 29.05.2019
15.06.2019
№219.017.839f

Способ изготовления органокомплекса гортани и щитовидной железы человека

Изобретение относится к медицине, а именно к нормальной и топографической анатомии, и может быть использовано для изготовления органокомплекса гортани и щитовидной железы человека. Производят последовательное обезжиривание, подсушивание и экспозицию. Органокомплекс препарируют путем удаления...
Тип: Изобретение
Номер охранного документа: 0002691531
Дата охранного документа: 14.06.2019
19.06.2019
№219.017.8a02

Способ оценки реакции закладочного массива по результатам натурных наблюдений за оседаниями земной поверхности

Изобретение относится к горной промышленности и предназначено для количественной оценки натурных наблюдений геомеханической роли закладочного массива (ЗМ) при его взаимодействии с породными целиками (ПЦ) различного производственного назначения. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002408785
Дата охранного документа: 10.01.2011
27.06.2019
№219.017.92ec

Способ оценки степени интеграции остеозамещающих материалов

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по...
Тип: Изобретение
Номер охранного документа: 0002692668
Дата охранного документа: 25.06.2019
+ добавить свой РИД