×
20.05.2019
219.017.5d5b

Результат интеллектуальной деятельности: ЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ ВЫСОКОНАГРУЖЕННЫХ КОНСТРУКЦИЙ КОНТЕЙНЕРНОЙ ТЕХНИКИ АТОМНОЙ И ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к листовой хладостойкой стали, используемой в атомном энергомашиностроении при серийном производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов атомной и термоядерной энергетики. Сталь содержит углерод, кремний, марганец, хром, никель, медь, ванадий, ниобий, алюминий, серу, фосфор, титан, иттрий, азот, мышьяк и железо при следующем соотношении компонентов, вес.%: углерод 0,05-0,09, кремний 0,5-0,7, марганец 1,2-1,5, хром 0,05-0,25, никель 0,05-0,30, медь 0,05-0,25, ванадий 0,01-0,09, ниобий 0,01-0,07, титан 0,003-0,05, иттрий 0,001-0,005, азот 0,005-0,01, алюминий 0,02-0,05, мышьяк 0,003-0,01, сера 0,003-0,01, фосфор 0,003-0,01, железо остальное. Значение углеродного эквивалента стали не превышает 0,38%, суммарное содержание ванадия и ниобия не превышает 0,12%, а суммарное содержание серы, фосфора и мышьяка не превышает 0,022%. Улучшается комплекс основных физико-механических и служебных свойств, обеспечивающий повышение деформационной способности и ресурсных характеристик высоконагруженных конструкций контейнерного оборудования. 2 табл.

Изобретение относится к области атомного энергомашиностроения и предназначено для использования при серийном производстве высоконадежной контейнерной техники, в частности металлобетонных контейнеров для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов атомной и термоядерной энергетики.

Известны конструкционные стали и сплавы, широко применяемые в различных отраслях промышленности и народного хозяйства, например стали марок 09Г2С, 10Г2С и 16ГС, а также другие аналоги, указанные в научно-технической и патентной литературе [1-5]. Однако известные материалы не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных характеристик, в том числе деформационной способности в условиях ударного и статического нагружения при отрицательных температурах, во многом определяющих требуемую работоспособность и эксплуатационную надежность контейнерного оборудования.

Наиболее близкой к заявляемой композиции по базовому химическому составу и функциональному назначению компонентов является сталь типа 09Г2С [1], содержащая в своем составе следующие элементы, вес.%:

углерод 0,03-0,10
кремний 0,3-0,7
марганец 1,0-1,7
хром 0,05-0,25
никель 0,05-0,25
медь 0,05-0,25
ванадий 0,01-0,08
ниобий 0,005-0,05
алюминий 0,01-0,06
кальций 0,001-0,005
сера 0,002-0,015
фосфор 0,003-0,015
железо остальное

При этом суммарное содержание никеля и меди не превышает 0,4%, а суммарное содержание серы и фосфора не превышает 0,025%.

Данную марку стали в соответствии с требованиями действующей нормативно-технической и технологической документации [2-4] рекомендуется использовать как конструкционный материал в машиностроительных отраслях промышленности при производстве серийной металлопродукции общетехнического назначения. При этом известная сталь характеризуется недостаточно высоким уровнем деформационной способности металла в условиях ударного и статического нагружения при отрицательных температурах, а также является чувствительной к тепловому и радиационному охрупчиванию в процессе транспортировки и длительного хранения отработавшего ядерного топлива.

Согласно требованиям действующих государственных и отраслевых стандартов содержание в сталях-аналогах ряда легирующих и примесных элементов, повышающих склонность металла к тепловому и радиационному охрупчиванию и образующих при нейтронном облучении долгоживущие изотопы с высокой энергией гамма-излучения, не контролируется и находится в весьма широких концентрационных пределах.

Техническим результатом настоящего изобретения является создание высокотехнологичной листовой контейнерной стали, обладающей улучшенным комплексом основных физико-механических и служебных свойств, меньшей склонностью к тепловому и радиационному охрупчиванию, что обеспечивает повышение деформационной способности и эксплуатационной надежности высоконагруженных несущих конструкций металлобетонных контейнеров для транспортировки и длительного хранения отработавших тепловыделяющих сборок стационарных и транспортных реакторных установок типа РБМК и ВВЭР.

Решение поставленной в заявке задачи достигается изменением в стали соотношения легирующих и модифицирующих элементов и введением в состав заявляемой композиции оптимального количества иттрия, титана и азота, а также нормированием содержания серы, фосфора и мышьяка в сочетании с расчетной величиной углеродного эквивалента. Предлагается состав, содержащий в мас.%:

углерод 0,05-0,09
кремний 0,5-0,7
марганец 1,2-1,5
хром 0,05-0,25
никель 0,05-0,30
медь 0,05-0,25
ванадий 0,01-0,09
ниобий 0,01-0,07
иттрий 0,001-0,005
азот 0,005-0,01
титан 0,003-0,05
алюминий 0,02-0,05
мышьяк 0,003-0,01
сера 0,003-0,01
фосфор 0,003-0,01
железо остальное

При этом:

- значение углеродного коэффициента стали (Сэкв.) не должно превышать 0,38;

- суммарное содержание ванадия и ниобия не должно превышать 0,12%;

- суммарное содержание серы, фосфора и мышьяка не должно превышать 0,022%.

Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемая композиция обеспечивала формирование наиболее оптимального структурного состояния, требуемый уровень и стабильность важнейших структурно-чувствительных свойств металла, во многом определяющих заданную работоспособность и эксплуатационную надежность, а также ресурсные характеристики создаваемой контейнерной техники.

Введение в заявляемую сталь микролегирующих и модифицирующих добавок иттрия, титана, азота и мышьяка в указанном соотношении с другими легирующими элементами, и в первую очередь с ванадием, ниобием и хромом, улучшает ее структурную стабильность и, как следствие, весь комплекс основных физико-механических свойств, положительно влияющих на снижение чувствительности металла к тепловому и радиационному охрупчиванию, а также повышает работу зарождения и развития межзеренной трещины в условиях динамического нагружения в области отрицательных температур. При этом, как показали наши исследования [6-9], происходит более равномерное распределение легирующих и примесных элементов, а также неметаллических включений по всему сечению слитка, крупных поковок и слябов, металл эффективней очищается от вредных примесей и газов, тоньше и чище становятся границы зерна, увеличивается прочность межкристаллитной связи, что в целом обеспечивает значительное повышение деформационной способности (пластичности, вязкости и др. характеристик) стали. Снижается склонность металла к структурной анизотропии и существенно улучшается его технологичность на стадии металлургического передела, что повышает выход годного при промышленном производстве листового проката. Введение модифицирующих элементов вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению этих важных структурно-чувствительных характеристик материала.

Выбор системы комплексного легирования заявляемой композиции предусматривает также ограничение суммарного содержания некоторых карбидообразующих элементов в оптимальном соотношении с углеродом, что способствует образованию при соответствующей термообработке в достаточном количестве мелкодисперсных карбидных фаз, термодинамически устойчивых в широком интервале температур технологических, сварочных и эксплуатационных нагревов, что снижает структурную неоднородность в приграничных областях и повышает сопротивление металла хрупкому разрушению в условиях статического и динамического нагружения. При этом обеспечение требуемого, более высокого, чем в прототипе, уровня пластических характеристик и деформационной способности стали достигается за счет формирования устойчивой дислокационной структуры, определяющей оптимальную плотность активных плоскостей скольжения в процессе пластической деформации и отражающей важный вклад дислокационной неупругости в процессе внутреннего трения.

При этом логарифмический декремент колебаний, как одна из важных характеристик реального структурного состояния металла и его деформационной способности, показывает заметное возрастание энергоемкости процесса пластической деформации и, как следствие, работы зарождения хрупкой трещины в условиях ударного нагружения и низких температур.

Выполненные металлографические исследования и электронно-фрактографический анализ поверхности излома ударных образцов с помощью высокоразрешающей растровой электронной микроскопии [6-9] свидетельствуют о преобладании внутризеренного характера разрушения и наличии развитого локального пластического течения металла, что является важной структурной характеристикой высокой деформационной способности заявляемой композиции.

Введение требуемых количеств ванадия, ниобия и титана в сочетании с заданной величиной углеродного эквивалента способствует активному образованию высокодисперсных карбонитридных фаз и повышению отпускоустойчивости при сохранении необходимого уровня прочностных и пластических характеристик металла в процессе длительной эксплуатации. Увеличение содержания этих элементов сверх указанных в формуле изобретения пределов снижает дисперсность образующихся фаз внедрения и затрудняет равномерность их распределения по объему зерна, что ослабляет механизм закрепления дислокаций в процессе последующей термообработки листового проката и других полуфабрикатов. При этом величина углеродного эквивалента, определяющего четкую взаимосвязь структурно-чувствительных характеристик стали с ее реальным химическим и фазовым составом, рассчитывается по общепринятой математической зависимости [10]:

Комплексное введение в сталь модифицирующих добавок титана, азота и мышьяка в оптимальном сочетании с такими термодинамически активными элементами (Al, Si, Mn и др.) способствует повышению эффективной поверхностной энергии межзеренного разрушения за счет подавления зернограничных сегрегационных процессов. Методом локального рентгеноспектрального анализа и Оже-электронной спектроскопии установлено, что при увеличении указанного в формуле изобретения суммарного содержания вводимых элементов, в результате воздействия технологических и эксплуатационных нагревов, активизируются процессы межзеренных сегрегационных образований и возрастает склонность стали к тепловому и радиационному охрупчиванию. Определение значения работы деформации и анализ электронных фрактограмм с использованием растровой электронной микроскопии свидетельствуют об увеличении доли вязкой составляющей в изломе, отражающей более высокую энергоемкость процесса разрушения по сравнению с хрупко-скольными структурными образованиями сталей-аналогов, что хорошо согласуется с результатами выполненных механических испытаний и положительно влияет на повышение сопротивления заявляемой композиции хрупкому разрушению [11, 12].

Полученный более высокий уровень физико-механических, технологических и служебных характеристик стали обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным соотношением сильнокарбидообразующих элементов в сочетании с расчетной величиной углеродного эквивалента, а также контролированием оптимального содержания легкоплавких элементов в твердом растворе.

В ЦНИИ КМ «Прометей» в соответствии с планом научно-исследовательских работ отрасли, проводимых в рамках обеспечения выполнения федеральной целевой научно-технической программы [13], осуществлен комплекс лабораторных и опытно-промышленных работ по выплавке, пластической и термической обработкам разработанной марки стали. Металл выплавлялся в 100-тонной дуговой электропечи с разливкой в слитки массой до 30 т и последующей обработкой давлением на промышленном кузнечно-прессовом и прокатном оборудовании.

Химический состав исследованных материалов, а также результаты определения наиболее важных свойств и характеристик опытного металла представлены в табл.1 и 2.

Ожидаемый технико-экономический эффект промышленного применения разработанной марки стали в атомном энергомашиностроении выразится в повышении эксплуатационной надежности и ресурсных характеристик производимых контейнерных сборок серии МБК и другого оборудования создаваемой контейнерной техники для атомной и термоядерной энергетики. Новое техническое решение может быть также использовано и в других отраслях отечественного машиностроения при производстве современной высоконадежной техники и оборудования для народного хозяйства.

В качестве примесей заявляемая сталь может содержать, вес %:

Мышьяк 0,003-0,01
Свинец 0,0005-0,006
Олово 0,0008-0,008
Цинк 0,0008-0,009
Сурьма 0,0005-0,008
Висмут 0,0006-0,006

ЛИТЕРАТУРА

1. И.В.Горынин, Н.Г.Быковский, Т.И.Титова и др. «Сталь для высоконадежного контейнерного оборудования по транспортировке и хранению отработавших ядерных материалов». - Патент РФ № 2232203, 2003. - прототип.

2. ГОСТ 19281-89 «Листовой прокат из стали повышенной прочности». М., Госстандарт, 1991.

3. ГОСТ 5520-79 «Сталь листовая углеродистая низколегированная для сосудов, работающих под давлением», М., Госстандарт, 1987.

4. Технические условия ТУ 5.961-11829-2003 «Прокат листовой из стали марки 09Г2СА», 2003.

5. В.Н.Журавлев, И.И.Николаева. Машиностроительные стали (справочник). М., изд-во «Машиностроение», 1981.

6. Технический отчет ЦНИИ КМ «Прометей» по теме № 35.663.11.001 «Создание контейнеров для отработавшего ядерного топлива стационарных и транспортных АЭУ с использованием радиационно стойких малоактивируемых сталей нового поколения» (проблема «Контейнер», инв. №9369°), Санкт-Петербург, 2003.

7. Г.П.Карзов, И.А.Повышев, В.Н.Павлов. Технический отчет ЦНИИ КМ «Прометей» по теме «Материаловедческое сопровождение техпроекта и промышленного производства на Ижорском заводе опытной партии транспортных упаковочных комплектов ТУК-18 для атомного ледокольного флота Мурманского морского пароходства», Ленинград, 1991.

8. Г.П.Карзов, И.А.Повышев, А.В.Ильин и др. «Проблемы разработки и выбора конструкционных материалов для сварных конструкций металлобетонных контейнеров для транспортировки и хранения радиоактивных отходов». - Труды Международной научно-технической конференции «Радиоактивные отходы: хранение, транспортировка и переработка», Санкт-Петербург, 1996, стр.С-40.

9. Г.П.Карзов, Н.Г.Быковский, И.А.Повышев и др. «Материаловедческая концепция обеспечения радиационно-экологической безопасности современной контейнерной техники для хранения и транспортировки ОЯТ». - Труды 7-й Российской межотраслевой конференции по реакторному материаловедению, г. Димитровград, НИИАР, 2003, стр.130-131.

10. Лосев В.А., Юхин Н.А. Иллюстрированное пособие сварщика. М.: издательство "Соуэло", 2007 г.

11. Н.Г.Быковский, И.А.Повышев, Г.Н.Филимонов и др. Материалы международного семинара Россия - НАТО «Научные проблемы и нерешенные задачи утилизации кораблей с ЯЭУ и экологической реабилитации обслуживающей инфраструктуры», Москва, изд-е ИБРАЭ РАН (Институт проблем безопасности развития атомной энергетики), 2002, стр.19.

12. Н.Г.Быковский, М.И.Оленин и др. Технический отчет ЦНИИ КМ «Прометей» по теме № 146/6626 «Материаловедческое сопровождение промышленного изготовления на стане 5000 ОАО «Северсталь» опытной партии листового проката из стали 09Г2СА-А», Санкт-Петербург, 2005.

13. Федеральная целевая программа "Национальная технологическая база" НИОКР "Модификация".

Листовая хладостойкая сталь для высоконагруженных конструкций контейнерной техники атомной и термоядерной энергетики, содержащая углерод, кремний, марганец, хром, никель, медь, ванадий, ниобий, алюминий, серу, фосфор и железо, отличающаяся тем, что она дополнительно содержит титан, иттрий, азот и мышьяк при следующем соотношении легирующих и модифицирующих элементов, вес.%: при этом значение углеродного эквивалента стали не превышает 0,38%, суммарное содержание ванадия и ниобия не превышает 0,12%, а суммарное содержание серы, фосфора и мышьяка не превышает 0,022%.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
20.05.2019
№219.017.5d65

Электрод для сварки жаропрочных сплавов

Изобретение может быть использовано при сварке жаростойких жаропрочных сплавов на железохромоникелевой основе для ответственных конструкций, в частности, при изготовлении, монтаже и ремонте реакционных змеевиков высокотемпературных установок пиролиза, подвергающихся значительным статическим...
Тип: Изобретение
Номер охранного документа: 0002408451
Дата охранного документа: 10.01.2011
Показаны записи 21-30 из 54.
25.08.2017
№217.015.a47f

Способ термодиффузионного цинкования крепежных деталей из сталей бейнитного класса с одновременным повышением их хладостойкости

Изобретение относится к области химико-термической обработки изделий, а именно к технологии термодиффузионного цинкования крепежных деталей из сталей бейнитного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например, в составе...
Тип: Изобретение
Номер охранного документа: 0002607505
Дата охранного документа: 10.01.2017
29.12.2017
№217.015.fb55

Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник...
Тип: Изобретение
Номер охранного документа: 0002640311
Дата охранного документа: 27.12.2017
28.07.2018
№218.016.7606

Аустенитная жаропрочная и коррозионно-стойкая сталь

Изобретение относится к области металлургии, а именно к составам аустенитных жаропрочных и коррозионно-стойких сталей, используемых в атомной энергетике, энергомашиностроении, машиностроении в установках, работающих длительное время при температурах 500÷650°С. Сталь содержит компоненты в...
Тип: Изобретение
Номер охранного документа: 0002662512
Дата охранного документа: 26.07.2018
20.02.2019
№219.016.bce7

Аустенитная коррозионно-стойкая сталь

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных сталей, используемых в различных отраслях промышленности для деталей ответственного назначения. Аустенитная коррозионно-стойкая сталь, содержит компоненты в следующем соотношении, в мас.%: углерод...
Тип: Изобретение
Номер охранного документа: 0002284366
Дата охранного документа: 27.09.2006
20.02.2019
№219.016.bd3d

Коррозионно-стойкая сталь для внутрикорпусных устройств и теплообменного оборудования аэс

Изобретение относится к металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного и вспомогательного оборудования АЭС, отвечающего требованиям эксплуатации и промышленной безопасности ядерной энергетики....
Тип: Изобретение
Номер охранного документа: 0002293787
Дата охранного документа: 20.02.2007
20.02.2019
№219.016.be84

Коррозионно-стойкая высокопрочная немагнитная сталь и способ ее термодеформационной обработки

Изобретение относится к металлургии конструкционных сталей и сплавов, содержащих в качестве основы железо с заданным соотношением легирующих и примесных элементов и предназначено для использования в различных областях промышленности. Нагревают слиток из коррозионно-стойкой высокопрочной...
Тип: Изобретение
Номер охранного документа: 0002392348
Дата охранного документа: 20.06.2010
20.02.2019
№219.016.c092

Способ получения бездефектных поковок для длинномерных изделий типа роторов или валов

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении поковок для длинномерных изделий типа роторов или валов. Полученный из отлитого кузнечного слитка блок подвергают осадке. Из осаженного блока удаляют центральную дефектную зону путем его прошивки...
Тип: Изобретение
Номер охранного документа: 0002302921
Дата охранного документа: 20.07.2007
23.02.2019
№219.016.c75e

Титановый сплав для силовых крепежных элементов

Изобретение относиться к металлургии, а именно к титановым сплавам, и предназначено для использования в атомном энергомашиностроении при производстве силовых крепежных элементов фланцевых соединений и разъемов различных технологических систем реакторного оборудования атомных и термоядерных...
Тип: Изобретение
Номер охранного документа: 0002391426
Дата охранного документа: 10.06.2010
23.02.2019
№219.016.c79d

Титановый сплав для реакторного оборудования атомной и термоядерной энергетики

Изобретение относится к металлургии титановых сплавов, предназначенных для использования при производстве оборудования и в корпусных конструкциях стационарных и транспортных ядерных энергетических установок. Техническим результатом является создание сплава с улучшенным комплексом механических и...
Тип: Изобретение
Номер охранного документа: 0002367697
Дата охранного документа: 20.09.2009
11.03.2019
№219.016.d946

Способ получения методом наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне

Изобретение относится к сварочному производству, а именно к способам наплавки металлического покрытия с ультрамелкодисперсной структурой и упрочняющими частицами в наноразмерном диапазоне. Способ включает изготовление присадочного материала из смеси порошков и связующего в виде двух паст....
Тип: Изобретение
Номер охранного документа: 0002350441
Дата охранного документа: 27.03.2009
+ добавить свой РИД