×
20.05.2019
219.017.5cca

Результат интеллектуальной деятельности: Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Вид РИД

Изобретение

Аннотация: Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, рабочую камеру с входными и выходными каналами, заполненную твердым углеводородным веществом, и регулирующий элемент с приводом, подключенный к выпускной полости корпуса. Твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса. Выпускная полость корпуса подключена к камере сгорания двигателя. Газификатор снабжен акустическим резонатором с пневмоприводом, установленным во впускной полости корпуса напротив выпускного патрубка твердотопливного газогенератора. Рабочая камера газификатора выполнена с цилиндрической боковой поверхностью, на которой выполнены по меньшей мере две сквозные продольные прорези, являющиеся выходными каналами рабочей камеры, и снабжена, расположенной со стороны выпускной полости корпуса, газонепроницаемой торцевой стенкой и, расположенной со стороны впускной полости корпуса, перфорированной торцевой стенкой, отверстия перфорации которой являются входными каналами рабочей камеры. Регулирующий элемент выполнен в виде цилиндрической обечайки, сопряженной своей внутренней поверхностью с цилиндрической боковой поверхностью рабочей камеры. Цилиндрическая обечайка снабжена по меньшей мере двумя сквозными спиралевидными прорезями, выполненными пересекающимися с продольными прорезями рабочей камеры. Привод цилиндрической обечайки выполнен поворотным. Изобретение позволяет обеспечить повышение экономичности работы газификатора за счет оптимизации параметров процесса сублимации твердого углеводородного вещества путем последовательной послойной обработки твердого углеводородного вещества потоком высокотемпературных продуктов сгорания. 5 ил.

Изобретение относится к авиационному двигателестроению, в частности к прямоточным воздушно-реактивным двигателям.

Использование летательных аппаратов с прямоточным воздушно-реактивным двигателем, имеющим газогенератор с комбинированным твердотопливным зарядом, позволяет улучшить летно-технические характеристики по сравнению с аналогичными летательными аппаратами на жидком углеводородном топливе. Поток с регулируемым массовым расходом газообразного низкотемпературного (менее 1000 К) горючего, являющегося смесью продуктов сгорания твердого топлива и продуктов сублимации твердых углеводородов обеспечивает эффективное регенеративное охлаждение двигателя летательного аппарата при высоких скоростях полета.

Известно устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя, содержащее твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, и регулирующий элемент с приводом, подключенный к выпускной полости корпуса, причем твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса газификатора, а выпускная полость газификатора подключена к камере сгорания двигателя (US 5537815, 1996).

В известном устройстве в качестве твердого топлива газификатора используется состав, обладающий абляционными свойствами, т.е. свойствами образовывать под воздействием высокотемпературного потока газа твердого пористого остатка - кокса, обладающего высокими теплоизоляционными свойствами. Поэтому основным назначением известного газификатора является защита корпуса летательного аппарата от воздействия высокотемпературного газового потока в камере сгорания и соответственно в газификаторе отсутствуют специальные регулирующие элементы, способствующие эффективному использованию твердого топлива в камере сгорания летательного аппарата.

Известно устройство газификации твердых углеводородов, содержащее твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, рабочую камеру с входными и выходными каналами, заполненную твердым углеводородным веществом, и регулирующий элемент с приводом, причем твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса газификатора (RU 2633976, 2017).

Регулирующий элемент выполнен в виде резонансной камеры с поршнем, установленной напротив суживающегося сопла твердотопливного газогенератора, и предназначен для резкого повышения массового расходарабочего тела, получаемого за счет сублимации углеводородного наполнителя газификатора. Поскольку в известном устройстве не предусмотрены какие-либо специальные средства, позволяющие регулировать в процессе работы такие рабочие параметры, как давление, расход или температура газового потока газогенератора, эффективность использования углеводородного наполнителя газификатора существенно снижается, т.к. обеспечить одновременно оптимальные условия для процесса сублимации по всему объему наполнителя практически невозможно.

Наиболее близким к изобретению по технической сущности и достигаемому результату является устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя, содержащее твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, рабочую камеру с входными и выходными каналами, заполненную твердым углеводородным веществом, и регулирующий элемент с приводом, подключенный к выпускной полости корпуса, причем твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса, а выпускная полость корпуса подключена к камере сгорания двигателя (US 3908358, 1975).

В известном устройстве регулирующий элемент выполнен в виде перепускного клапана, позволяющего управлять расходом газового потока из газогенератора, подаваемого в газификатор, и тем самым корректировать параметры процесса сублимации твердых углеводородов в рабочей камере газификатора.

Недостатком известного устройства является то, что высокотемпературные продукты сгорания из твердотопливного газогенератора, попадая в рабочую камеру газификатора, распространяются сразу по всему объему твердого углеводородного вещества, причем распространяются неравномерно, образуя в глубинных и периферийныхслоях «застойные» зоны с параметрами тепломассообмена, не оптимальными для реализации процесса сублимации твердого углеводородного вещества.

В этих зонах образуются излишки жидкой фазы преобразующихся веществ, которые способствуют потере формы шаровых элементов в рабочей камере и неравномерному перераспределению этих элементов по объему рабочей камеры. При этом существенно снижается интенсивность газификации с соответствующим снижением параметров газового потока на выходе из газификатора.

Техническая проблема, решение которой обеспечивается изобретением, заключается в последовательной послойной обработке твердого углеводородного вещества потоком высокотемпературных продуктов сгорания твердого топлива.

Техническим результатом изобретения является повышение экономичности работы газификатора за счет оптимизации параметров процесса сублимации твердого углеводородного вещества.

Технический результат достигается за счет того, что устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, рабочую камеру с входными и выходными каналами, заполненную твердым углеводородным веществом, и регулирующий элемент с приводом, подключенный к выпускной полости корпуса, причем твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса, а выпускная полость корпуса подключена к камере сгорания двигателя. Газификатор снабжен акустическим резонатором с пневмоприводом, установленным во впускной полости корпуса напротив выпускного патрубка твердотопливного газогенератора, рабочая камера газификатора выполнена с цилиндрической боковой поверхностью, на которой выполнены, по меньшей мере, двесквозные продольные прорези, являющиеся выходными каналами рабочей камеры, и снабжена, расположенной со стороны выпускной полости корпуса, газонепроницаемой торцевой стенкой и, расположенной со стороны впускной полости корпуса, перфорированной торцевой стенкой, отверстия перфорации которой являются входными каналами рабочей камеры, а регулирующий элемент выполнен в виде цилиндрической обечайки, сопряженной своей внутренней поверхностью с цилиндрической боковой поверхностью рабочей камеры, причем цилиндрическая обечайка снабжена, по меньшей мере, двумя сквозными спиралевидными прорезями, выполненными пересекающимися с продольными прорезями рабочей камеры, а привод цилиндрической обечайки выполнен поворотным.

Существенность отличительных признаков устройства газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя подтверждается тем, что только совокупность всех конструктивных признаков, описывающая изобретение, позволяет обеспечить достижение технического результата изобретения - повышение экономичности работы газификатора за счет оптимизации параметров процесса сублимации твердого углеводородного вещества путем его последовательной послойной обработки потоком высокотемпературных продуктов сгорания.

Предложенное техническое решение поясняется следующим подробным описанием конструкции устройства газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя и его работы со ссылкой на фиг. 1-5, где:

на фиг. 1 показана принципиальная схема прямоточного воздушно-реактивного двигателя с устройством газификации твердых углеводородов;

на фиг. 2 представлен продольный разрез устройства для газификации твердых углеводородов в изометрии;

на фиг. 3 - рабочая камера газификатора в изометрии;

на фиг. 4 - цилиндрическая обечайка регулирующего элемента;

на фиг. 5 - акустический резонатор с пневмоприводом.

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит газификатор 1, имеющий полый корпус 2 с впускной полостью 3 и выпускной полостью 4, расположенными на противоположных сторонах корпуса 2, и рабочую камеру 5, заполненную шаровыми элементами 6 из твердого углеводородного вещества. В качестве материалов, для изготовления шаровых элементов 6, могут быть использованы твердые углеводородные вещества, например, полиэтилен, полиизобутилен, уротропин. Выпускная полость 4 корпуса 2 подключена к камере сгорания 7 прямоточного воздушно-реактивного двигателя через ее рубашку 8 охлаждения (фиг. 1).

Рабочая камера 5 снабжена газонепроницаемой торцевой стенкой 9, расположенной со стороны выпускной полости 4 корпуса 2, и перфорированной торцевой стенкой 10, расположенной со стороны впускной полости 3 корпуса 2. Отверстия 11 перфорированной торцевой стенки 10 являются входными каналами рабочей камеры 5. (фиг. 2).

Устройство содержит твердотопливный газогенератор 12 с воспламенителем 13 и выпускным патрубком 14, установленный на корпусе 2 газификатора 1. Твердотопливный газогенератор 12 соединен с впускной полостью 3 корпуса 2. Газификатор 1 снабжен акустическим резонатором 15 с пневмоприводом 16, размещенным во впускной полости 3 корпуса 2 напротив выпускного патрубка 14 твердотопливного газогенератора 12.

Рабочая камера 5 выполнена с цилиндрической боковой поверхностью 17, на которой выполнены, по меньшей мере, две сквозные продольные прорези 18, являющиеся выходными каналами рабочей камеры 5. На фиг.3 представлен пример выполнения цилиндрической боковой поверхности 17 рабочей камеры 5 с тремя сквозными продольными прорезями 18.

Регулирующий элемент выполнен в виде цилиндрической обечайки 19 (фиг. 4), сопряженной своей внутренней поверхностью 20 с наружнойцилиндрической боковой поверхностью 17 рабочей камеры 5. Цилиндрическая обечайка 19 механически связана с поворотным приводом 21 (фиг. 2) и имеет, по меньшей мере, две сквозные спиралевидные прорези 22, выполненные пересекающимися с продольными прорезями 18 рабочей камеры 5. В месте пересечения продольных прорезей 18 и спиралевидных прорезей 22 образуются выходные отверстия регулирующего элемента.

Акустический резонатор 15 (фиг. 5) представляет собой полый цилиндрический корпус 23 и подпружиненный колебательный элемент 24, размещенный в корпусе 23 с возможностью возвратно-поступательного перемещения и с образованием управляющей полости 25, сообщенной с источником давления пневмопривода 16 через регулятор давления 26. Для герметизации управляющей полости 25 колебательный элемент 24 снабжен уплотнением 27 и ограничителем хода, выполненным в виде кольцевого бурта 28 на его наружной поверхности. На торцевой поверхности колебательного элемента 24, обращенной к выпускному патрубку 14 твердотопливного газогенератора 12, расположено конфузорное сопло 29.

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя работает следующим образом.

В начальный момент времени при срабатывании воспламенителя 13 происходит воспламенение заряда твердого топлива, размещенного в твердотопливном газогенераторе 12, и высокотемпературные продукты сгорания протекают через выпускной патрубок 14 в впускную полость 3 корпуса 2 и акустический резонатор 15. Из впускной полости 3 высокотемпературные продукты сгорания протекая чрез отверстия 11 перфорированной торцевой стенки 10 поступают в рабочую камеру 5, где размещаются шаровые элементы 6 твердого углеводородного вещества.

Посредством тепломассообмена при омывании поверхности шаровых элементов 6, обтекающими их продуктами сгорания заряда твердого топливагазогенератора 12, происходит сублимация твердого углеводородного вещества.

Поток газообразных продуктов сублимации шаровых элементов 6 твердого углеводородного вещества через выходные отверстия, образовавшиеся от частичного перекрытия сквозных продольных прорезей 18 на цилиндрической боковой поверхности 17 рабочей камеры 5 сквозными спиралевидными прорезями 22 на цилиндрической обечайке 19, направляется через полость, образованную наружной поверхностью цилиндрической обечайки 19 и внутренней поверхностью корпуса 2, в выпускную полость 4 корпуса 2.

Из выпускной полости 4, подключенной к камере сгорания 7 прямоточного воздушно-реактивного двигателя, газообразные продукты сублимации шаровых элементов 6 твердого углеводородного вещества подаются в рубашку охлаждения 8, а затем смешиваются с потоком воздуха и направляются в камеру сгорания 7 двигателя для сжигания и создания силы тяги.

Сочетание спиралевидной формы прорезей 22 на цилиндрической обечайке 19 с продольной формой прорезей 18 на цилиндрической боковой поверхности 17 рабочей камеры 5 позволяет при вращении цилиндрической обечайки 19 перемещать выходные отверстия регулирующего элемента вдоль рабочей камеры 5 от перфорированной торцевой стенки 10 к газонепроницаемой торцевой стенке 9.

Продольное перемещение выходных отверстий регулирующего элемента обеспечивает последовательную сублимацию шаровых элементов 6 твердого углеводородного вещества находящихся в рабочей камере 5 от перфорированной торцевой стенки 10 до зоны, перекрываемой выходными отверстиями регулирующего элемента, через которые газообразные продукты сублимации твердого углеводородного вещества вытекают в полость, образованную наружной поверхностью цилиндрической обечайки 19 и внутренней поверхностью корпуса 2.

При этом высокотемпературные продукты сгорания заряда твердого топлива не обтекают шаровые элементы 6, расположенные в зоне от выходных отверстий регулирующего элемента до газонепроницаемой торцевой стенки 9.

Это препятствует перемешиванию газообразных продуктов сублимации шаровых элементов 6 твердого углеводородного вещества с высокотемпературными продуктами сгорания заряда твердого топлива в этой области, которое может приводить к плавлению твердого углеводородного вещества с потерей формы шаровых элементов 6 и образованием жидкой массы в области объема камеры 5, из которой отсутствует отвод газов.

Регулирование массового расхода газообразного потока продуктов сублимации твердых углеводородов шаровых элементов 6 может осуществляться изменением скорости вращения поворотного привода 21. Увеличение скорости вращения приведет к возрастанию скорости продольного перемещения отверстий ограниченной длины от входа в камеру 5 с шаровыми элементами 6 твердого углеводородного вещества к ее выходу, закрытому газонепроницаемой торцевой стенкой 9.

При этом процесс последовательной сублимации будет происходить в течение меньшего временного интервала и расход газа, которой втекает в выпускную полость 4 корпуса 2 будет меньше. При уменьшении скорости вращения поворотного привода 21 скорость продольного перемещения отверстий ограниченной длины также уменьшатся, что приведет к увеличению времени процесса последовательной сублимации шаровых элементов 6 твердого углеводородного вещества и возрастанию расхода газа, которой втекает в выпускную полость 4 корпуса 2.

Другой способ регулирования массового расхода газообразного потока продуктов сублимации твердых углеводородов может осуществляться изменением скорости самого процесса сублимации воздействием на него акустических колебаний.

При натекании высокоскоростного потока продуктов сгорания заряда твердого топлива в впускной полости 3 корпуса 2, на конфузорное сопло 29, обращенное к выпускному патрубку 14 твердотопливного газогенератора 12, в колебательном элементе 24 акустического резонатора 15 возникают интенсивные акустические колебания (при реализации эффекта Гартмана). Созданные колебания излучаются в поток продуктов сгорания впускной полости 3 корпуса 2 и далее вместе с ним протекают через отверстия Ив перфорированной торцевой стенке 10 в камеру 5, где размещаются шаровые элементы 6 твердого углеводородного вещества.

Воздействие акустических колебаний способствует ускорению тепломассообмена между высокотемпературным потоком продуктов сгорания заряда твердого топлива и шаровыми элементами 6, что приводит к интенсификации процесса сублимации.

Эффективность данного механизма воздействия зависит от амплитуды и частоты генерируемых акустических колебаний. Регулирование этих параметров осуществляется изменением положения конфузорного сопла 29 в впускной полости 3 корпуса 2.

При подаче управляющего газа через регулятор давления 26, по пневмоприводу 16 в полость цилиндрического корпуса 23 подпружиненный колебательный элемент 24 может осуществлять возвратно-поступательные перемещения в зависимости от величины давления в управляющей полости 25. Изменением давления управляющего газа можно выбрать положение конфузорного сопла 29 во впускной полости 3 корпуса 2 таким, чтобы воздействие акустических колебаний на процесс сублимации твердых углеводородов было наиболее эффективным.

Устройство газификации твердых углеводородов позволяет обеспечить повышение экономичности работы газификатора за счет оптимизации параметров процесса сублимации твердого углеводородного вещества путем последовательной послойной обработки твердого углеводородного вещества потоком высокотемпературных продуктов сгорания.

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя, содержащее твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса, рабочую камеру с входными и выходными каналами, заполненную твердым углеводородным веществом, и регулирующий элемент с приводом, подключенный к выпускной полости корпуса, причем твердотопливный газогенератор выпускным патрубком соединен с впускной полостью корпуса, а выпускная полость корпуса подключена к камере сгорания двигателя, отличающееся тем, что газификатор снабжен акустическим резонатором с пневмоприводом, установленным во впускной полости корпуса напротив выпускного патрубка твердотопливного газогенератора, рабочая камера газификатора выполнена с цилиндрической боковой поверхностью, на которой выполнены по меньшей мере две сквозные продольные прорези, являющиеся выходными каналами рабочей камеры, и снабжена, расположенной со стороны выпускной полости корпуса, газонепроницаемой торцевой стенкой и, расположенной со стороны впускной полости корпуса, перфорированной торцевой стенкой, отверстия перфорации которой являются входными каналами рабочей камеры, а регулирующий элемент выполнен в виде цилиндрической обечайки, сопряженной своей внутренней поверхностью с цилиндрической боковой поверхностью рабочей камеры, причем цилиндрическая обечайка снабжена по меньшей мере двумя сквозными спиралевидными прорезями, выполненными пересекающимися с продольными прорезями рабочей камеры, а привод цилиндрической обечайки выполнен поворотным.
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя
Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя
Источник поступления информации: Роспатент

Показаны записи 211-220 из 251.
18.05.2019
№219.017.5b5e

Огнестойкий слоистый звукотеплоизолирующий материал

Изобретение относится к области создания слоистых звукотеплоизолирующих огнестойких материалов авиационного назначения, используемых в бортовой звукотеплоизолирующей конструкции пассажирских самолетов. Огнестойкий слоистый звукотеплоизолирующий материал содержит теплозвукоизолирующий и...
Тип: Изобретение
Номер охранного документа: 0002465145
Дата охранного документа: 27.10.2012
18.05.2019
№219.017.5b73

Способ получения волокнистого керамического материала

Изобретение относится к волокнистым керамическим материалам, которые способны выдерживать вибрационные нагрузки и градиент температур как по толщине материала, так и по его поверхности и которые предназначены для теплоизоляции металлических корпусов камер сгорания газотурбинных двигателей....
Тип: Изобретение
Номер охранного документа: 0002466966
Дата охранного документа: 20.11.2012
18.05.2019
№219.017.5b7e

Способ определения прочностных характеристик полимерных композиционных материалов

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что в полимерном композиционном материале контролируемого изделия с помощью излучающего преобразователя возбуждают импульсы ультразвуковых колебаний, принимают...
Тип: Изобретение
Номер охранного документа: 0002461820
Дата охранного документа: 20.09.2012
20.05.2019
№219.017.5d69

Судно на подводных крыльях

Изобретение относится к судостроению и касается создания судов на подводных крыльях. Судно на подводных крыльях, имеющее корпус, движительный комплекс и комплекс подводных крыльев, оборудовано расположенным по обе стороны корпуса центропланом брызгозащитной конфигурации, простирающимся вдоль...
Тип: Изобретение
Номер охранного документа: 0002434778
Дата охранного документа: 27.11.2011
29.05.2019
№219.017.681a

Способ летного моделирования ручной визуальной посадки самолета на объект

Изобретение относится к области исследований устойчивости, управляемости и динамики посадки самолетов и может быть использовано в приборном оборудовании летательных аппаратов для повышения безопасности и сокращения сроков и стоимости летного обучения и летной отработки управляемости самолетов...
Тип: Изобретение
Номер охранного документа: 0002471151
Дата охранного документа: 27.12.2012
29.05.2019
№219.017.6909

Многоцелевая подводная станция (мпс)

Изобретение относится к области освоения минеральных ресурсов недр арктического шельфа. Многофункциональная подводная станция имеет семь отсеков, атомную энергетическую установку (7), лебедки, грузовой трюм (5), самоходную спасательную камеру, устройство для разрушения льда (9). В отсеках...
Тип: Изобретение
Номер охранного документа: 0002436705
Дата охранного документа: 20.12.2011
29.05.2019
№219.017.69bd

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002469341
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69c3

Измерительное устройство

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков, подключенных к инструментальному усилителю и запитанных постоянным током. Техническим результатом является исключение аддитивных...
Тип: Изобретение
Номер охранного документа: 0002469338
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69c6

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрических мостовых датчиков с инструментальными усилителями, запитанных постоянным током. Техническим результатом изобретения является исключение...
Тип: Изобретение
Номер охранного документа: 0002469340
Дата охранного документа: 10.12.2012
01.06.2019
№219.017.7268

Способ выплавки никеле-титановых сплавов

Изобретение относится к области металлургии, в частности к получению никеле-титановых сплавов в вакуумных индукционных плавильных печах с холодным тиглем. В способе осуществляют укладку подготовленной шихты, при этом в нижнюю часть тигля укладывают титан около 20% высоты, затем равномерно...
Тип: Изобретение
Номер охранного документа: 0002690130
Дата охранного документа: 30.05.2019
Показаны записи 21-21 из 21.
15.05.2023
№223.018.57b1

Установка для газодинамических испытаний

Изобретение относится к испытаниям авиационной и ракетной техники. Установка для газодинамических испытаний содержит испытательную камеру (1) и генератор (7) газового потока. В генераторе (7) газового потока установлен эжектор (25), имеющий канал (26) активной среды первой ступени со...
Тип: Изобретение
Номер охранного документа: 0002767554
Дата охранного документа: 17.03.2022
+ добавить свой РИД