×
18.05.2019
219.017.59fa

Результат интеллектуальной деятельности: БЛОКИРУЮЩИЙ ДИОД ДЛЯ СОЛНЕЧНЫХ БАТАРЕЙ КОСМИЧЕСКИХ АППАРАТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. Техническим результатом заявленного изобретения является создание бескорпусного блокирующего диода для солнечных батарей космических аппаратов с высоким пробивным напряжением, низким прямым напряжением, устойчивого при термоциклировании в широком диапазоне температур (от -180°C до +100°С), диэлектрическая изоляция которого защищена от воздействия щелочных металлов. Сущность изобретения: блокирующий диод для солнечных батарей космических аппаратов содержит кремниевый кристалл с планарным p-n-переходом, омический контакт к области p-типа проводимости между областью эмиттера и полевой обкладкой кремниевого кристалла, омический контакт к области n-типа проводимости между областью базы и полевой обкладкой кремниевого кристалла, первый и второй выводы, расположенные параллельно лицевой и тыльной плоскостям кремниевого кристалла, первый и второй компенсаторы, расположенные между первым и вторым выводами и кремниевым кристаллом. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов.

Из уровня техники известен диод с планарным диффузионным переходом, изготовленный диффузией p-типа через окно в маскирующем слое двуокиси кремния. Для того чтобы исключить пробой у края объемного заряда по периметру p-n-перехода выполнены полевые кольца p-типа проводимости. Таким образом, удается добиться увеличения пробивных напряжений [см. Тейлор П. Расчет и проектирование тиристоров, пер. с англ. под ред. Евсеева Ю.А., М., Энергоатомиздат, 1990 г., стр.33, 208].

Недостаток технического решения заключается в том, что кольца являются концентраторами механических напряжений в кристалле, и в результате уменьшается стойкость прибора в процессе термоциклирования.

Из уровня техники известно техническое решение, когда используется металлическая полевая обкладка, которая служит контактом к эмиттеру и выступает за его пределы поверх слоя двуокиси кремния, благодаря чему расширяется область объемного заряда в базе диода. Таким образом устраняется краевой эффект искривления поля у края p-n-перехода, который приводит к низковольтному пробою [см. Блихер А., Физика тиристоров, пер. с англ. под ред. Грехова И.В., Л., Энергоиздат, 1981 г., стр.264].

Таким диодам свойственна временная нестабильность, так как небольшие нарушения адгезии металла к диэлектрической изоляции приводят к электрическому пробою.

Из уровня техники известен планарный диод, в котором применяется трехслойная диэлектрическая изоляция. После формирования планарного p-n-перехода удаляется маскирующий окисел и на монокристаллическую поверхность базы осаждается из газовой фазы полевая обкладка, выполненная из поликристаллического кремния, легированного кислородом [см. Тейлор П., Расчет и проектирование тиристоров, пер. с англ. под ред. Евсеева Ю.А., М., Энергоатомиздат, 1990 г., стр.178, 208]. Сверху для защиты от проникновения щелочных металлов осаждается слой поликристаллического кремния, легированный азотом, а чтобы избежать пробоя по поверхности осаждается третий слой пиролитической двуокиси кремния. В таком диоде область объемного заряда расширяется за счет потенциала, приложенного к полевой обкладке.

Недостатком технического решения является то, что перед осаждением полевой обкладки удаляется маскирующий слой двуокиси кремния, который был сформирован для изготовления p-n-перехода. В такой технологии невозможно сохранить чистоту поверхности кремния, на которую осаждается полевая обкладка, на таком же уровне, как при изготовлении планарного диода с изоляцией термической двуокисью кремния. В результате повышается уровень обратных токов.

Из уровня техники известно применение карбид кремниевых блокирующих диодов Шоттки для солнечных батарей космических аппаратов, предназначенных для использования при повышенных температурах [см. E.Maset, E.Sanchis-Kilders, P.Brosselard, X.Jordá, M.Vellvehi, P.Godignon. 300°C SiC Blocking Diodes for Solar Array Strings, Materials Science Forum, 2009 г., v.615-617, p.925-928].

Достоинством диодов Шотки на основе карбида кремния являются высокие пробивные напряжения (600 вольт) и высокие рабочие температуры, в перспективе до 600°C. Эти преимущества имеют большое значение для спускаемых на Венеру или запускаемых к Меркурию аппаратов.

Недостатком диодов Шоттки на основе карбида кремния являются высокие прямые напряжения, которые втрое больше чем у кремниевых планарных диодов, большие на три порядка обратные токи, меньшая надежность. Большие прямые напряжения приводят к потере КПД всей солнечной батареи, большие обратные токи к разрядке аккумуляторов в период нахождения спутника в тени земли.

Из уровня техники известен блокирующий диод для солнечных батарей космических аппаратов, содержащий кремниевый кристалл с планарным p-n-переходом, окруженным по периметру диэлектрической изоляцией из термической двуокиси кремния, омические контакты к областям p- и n-типа проводимости и выводы, параллельные лицевой и тыльной плоскостям кристалла (см. патент США на изобретение US 3952324, опубл. 20.08.1976).

Недостатком известного диода является низкое пробивное напряжение, так как нет ни охранных полевых колец, ни полевой обкладки, вследствие этого в месте выхода перехода на поверхность происходит пробой. Практика показывает, что верхний предел обратных напряжений для таких диодов не превышает 200-300 Вольт. Поскольку диод вертикальный, велико последовательное сопротивление базы, что обуславливает высокое прямое напряжение. Двуокись кремния, которая находится на поверхности кристалла диода, не защищена от проникновения щелочных металлов. В этом случае характеристики бескорпусных диодов нестабильные.

Техническим результатом заявленного изобретения является создание блокирующего диода для солнечных батарей космических аппаратов с высоким пробивным напряжением, низким прямым напряжением, устойчивого при термоциклировании в широком диапазоне температур (от -180°C до +100°C), диэлектрическая изоляция которого защищена от воздействия щелочных металлов. Кроме того, в диоде используется маскирующий окисел (слой двуокиси кремния), получаемый в процессе формирования планарного p-n-перехода. Достигаемый технический результат обеспечивает надежную работу солнечных батарей космических аппаратов.

Технический результат заявленного изобретения достигается совокупностью существенных признаков, а именно: блокирующий диод для солнечных батарей космических аппаратов содержащий:

- кремниевый кристалл с планарным p-n-переходом, выполненным в эпитаксиальном слое, выращенном на низкоомной подложке,

- слой термической двуокиси кремния, являющийся маской для области эмиттера планарного p-n-перехода, на поверхности эпитаксиального слоя, в котором расположена область базы;

- слой нелегированного поликристаллического кремния, выполняющий роль полевой обкладки, на поверхности термической двуокиси кремния;

- слой нитрида кремния, расположенный на поверхности слоя нелегированного поликристаллического кремния, выполняющего роль полевой обкладки;

- первый и второй выводы, расположенные параллельно лицевой и тыльной плоскостям кремниевого кристалла соответственно;

- первый и второй компенсаторы, расположенные между первым и вторым выводами и кремниевым кристаллом соответственно;

- омический контакт к области p-типа проводимости между областью эмиттера и полевой обкладкой кремниевого кристалла, обеспеченный путем напыления и вжигания слоя алюминия;

- омический контакт к области n-типа проводимости между областью базы и полевой обкладкой кремниевого кристалла, обеспеченный протравленной на всю глубину в термической двуокиси кремния канавки в виде кольца;

- при этом область полевой обкладки в зоне омического контакта легирована примесью того же типа проводимости, что и область базы до уровня не ниже 1019 ат/см3.

Первый и второй выводы присоединены к первому и второму компенсаторам соответственно точечной сваркой.

Первый и второй компенсаторы присоединены к кремниевому кристаллу припоем, содержащим не менее 80% свинца.

Первый и второй компенсаторы выполнены из металла, например из молибдена.

Площадь второго компенсатора, присоединенного к области n-типа проводимости, равна площади кремниевого кристалла.

На поверхности слоя нитрида кремния нанесен слой диэлектрика, например слой полиимида или слой двуокиси кремния.

Полевая обкладка из нелегированного поликристаллического кремния выполняет следующие функции:

- под действием отрицательного заряда, приложенного к полевой обкладке при обратном напряжении, расширяется область объемного заряда на поверхности и соответственно увеличивается пробивное напряжение;

- положительные заряды в двуокиси кремния, связанные с наличием в ней щелочных металлов и водорода, отсасываются от поверхности кремния, в результате исключается обогащение поверхности кремния электронами, которое приводит к снижению пробивного напряжения и увеличению токов утечки;

- уменьшается расстояние для миграции дырок в двуокиси кремния, возникших в результате образования электронно-дырочных пар при воздействии горячих электронов в момент приложения обратного напряжения. В результате уменьшается время жизни дырок до рекомбинации.

Для защиты от проникновения в двуокись кремния щелочных металлов поверх слоя двуокиси кремния осажден слой нитрида кремния. Чтобы избежать поверхностного пробоя, на слой нитрида кремния нанесен еще слой диэлектрика. В качестве такового может использоваться, например, пиролитический или плазмохимический оксид кремния, а также полиимид. Между первым и вторым выводами и кремниевым кристаллом находятся первый и второй компенсаторы, выполненные из металла, отличающегося от кремния по КТЛР не более чем на 4×10-6K-l.

Компенсатор на стороне n-типа проводимости выполнен из молибдена с никелевым покрытием и равен площади кремниевого кристалла. Если при монтаже диода в батарее диод установить нижней стороной по направлению к потоку излучения, то компенсатор и низкоомная часть подложки являются дополнительной защитой от ионизирующего излучения.

Припой, использованный для пайки компенсаторов к кремниевому кристаллу, содержит не менее 80% свинца. Благодаря этому сохраняется вязкость припоя при низких температурах.

Для уменьшения влияния разности коэффициента термического расширения (КТР) выводов и компенсаторов выводы присоединены к компенсаторам точечной сваркой.

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами, где показано следующее:

На фиг.1 - конструкция бескорпусного блокирующего диода для солнечных батарей космических аппаратов, где:

1 - кремниевый кристалл;

2 - первый слой припоя;

3 - первый компенсатор;

4 - первый вывод;

5 - второй слой припоя;

6 - второй компенсатор;

7 - второй вывод;

На фиг.2 изображен кремниевый кристалл диода в разрезе, где:

8 - слой нелегированного поликристаллического кремния (полевая обкладка);

9 - слой вженного алюминия;

10 - эпитаксиальный слой (область базы);

11 - область эмиттера (анода);

12 - слой термической двуокиси кремния;

13 - слой нитрида кремния;

14 - низкоомная подложка;

15 - канавка;

16 - кольцо.

Блокирующий диод для солнечных батарей космических аппаратов (см. фиг.1) состоит из кремниевого кристалла (1) размером 4×4 мм2, к которому при помощи припоя (2), в котором содержится не менее 80% свинца, со стороны эмиттера (анода) на стороне p-типа проводимости (с верхней стороны) присоединен первый компенсатор из металла, например молибдена (3), с никелевым покрытием, толщиной 0,2-0,3 мм, к первому компенсатору (3) точечной сваркой присоединен первый вывод (4) на стороне p-типа проводимости (медный или серебряный), с нижней стороны припоем (5) на стороне n-типа проводимости присоединен второй компенсатор (6) из металла, например молибдена с никелевым покрытием, толщиной 0,2-0,3 мм, второй компенсатор (6) может быть круглым или квадратным, равным по площади кремниевому кристаллу (1), к второму компенсатору (6) на стороне n-типа проводимости точечной сваркой присоединен второй вывод (7) (медный или серебряный).

Кремниевый кристалл диода (1) в разрезе (см. фиг.2) включает низкоомную подложку (14) с эпитаксиальным слоем (10), удельное сопротивление подложки (14) n-типа проводимости 0,01 Ом×см, легирующая примесь сурьма, эпитаксиальный слой (10) имеет толщину 60 мкм, n-тип проводимости с удельным сопротивлением 30 Ом×см, на поверхности эпитаксиального слоя (10) находится слой термической двуокиси кремния (12) толщиной 0,4-0,8 мкм, который служит маской при формировании области эмиттера (11) планарного p-n-перехода, глубина перехода составляет 10 мкм, поверх слоя термической двуокиси кремния (12) осажден слой нелегированного поликристаллического кремния (8) толщиной 0,2-0,4 мкм, который является полевой обкладкой, омический контакт между областью эмиттера и полевой обкладкой сформирован путем напыления и вжигания слоя алюминия (9), в слое термической двуокиси кремния (12) на всю глубину вытравлена канавка (15) в виде кольца (16) до кремния и область кремния в зоне канавки пролегирована фосфором до уровня концентрации примеси не менее 1019 ат/см3, в зоне контакта с эпитаксиальным слоем (10) слой нелегированного поликристаллического кремния (8) пролегирован фосфором в области канавки (15) до уровня концентрации примеси не менее 1019 ат/см3, что обеспечивает омический контакт полевой обкладки с областью базы диода, расположенной в эпитаксиальном слое (10). Область эмиттера может быть металлизирована, например, в следующей последовательности: слой алюминия толщиной 0,1 мкм, слой никеля толщиной 0,2 мкм, слой серебра толщиной 0,2 мкм, область n-типа проводимости (катода) также может быть металлизирована, например, в следующей последовательности: слой ванадия толщиной 0,1 мкм, слой никеля толщиной 0,2 мкм, слой серебра толщиной 0,2 мкм. Слой (8) - слой поликремния, для защиты слоя (12) двуокиси кремния от щелочных металлов поверх него находится слой (13) нитрида кремния толщиной 0,12 мкм, для того чтобы исключить дуговой разряд при подаче обратного напряжения между областью эмиттера (11) и кольцом (16), поверх слоя нитрида кремния (13) нанесен слой диэлектрика (на чертеже не показан).

Принцип работы заявленного блокирующего диода для солнечных батарей космических аппаратов осуществляется следующим образом.

При подаче обратного напряжения на диод, когда к выводу (4) (см. фиг.1) приложен отрицательный потенциал, а к выводу (7) положительный, в зоне p-n-перехода образуется область объемного заряда, которая расширяется вдоль полевой обкладки (8) (см. фиг.2), к которой также приложено обратное напряжение. Благодаря наличию омических контактов между областью эмиттера и полевой обкладкой и между областью базы и полевой обкладкой соответственно (к областям p- и n-типа проводимости), по полевой обкладке (8) течет микроток.

Положительным эффектом заявленного изобретения является тот факт, что если нет омических контактов полевой обкладки к областям n- и p-типа проводимости, то пробивные напряжения снижаются в два раза. Это подтверждается тем, что до операции вжигания алюминия пробивные напряжения не превышают 300-400 вольт. При этом наблюдается большой разброс параметров в партии пластин по пробивным напряжениям и обратным токам. После вжигания алюминия пробивные напряжения увеличиваются до 700-750 вольт и обратные токи уменьшаются с мА до 2-3 мкА.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 71.
20.02.2014
№216.012.a3f4

Устройство формирования частоты сигнала, автоматически устраняющее возникающие неисправности за минимальное время

Изобретение относится к области радиоизмерительной техники и может быть применено для контроля функционирования бортовой командно-измерительной системы, входящей в состав служебных приборов космических аппаратов, и других радиоустройств, ремонт которых в течение срока эксплуатации не возможен....
Тип: Изобретение
Номер охранного документа: 0002507687
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ad45

Устройство деления и извлечения квадратного корня

Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных машинах в качестве арифметического блока. Техническим результатом является увеличение быстродействия, а также возможность реализации функции устройства для деления и устройства для извлечения...
Тип: Изобретение
Номер охранного документа: 0002510072
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b0a3

Автономный пункт приема гелиогеофизической информации

Изобретение относится к технике космической связи и может быть использовано в наземных станциях, работающих с высокоэллиптическими и геостационарными космическими аппаратами для приема информации гелиогеофизического назначения, сформированной бортовым радиотехническим комплексом...
Тип: Изобретение
Номер охранного документа: 0002510934
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b1f4

Способ изготовления микроэлектромеханических реле

Изобретение относится к микросистемной технике и может быть использовано при изготовлении микроэлектромеханических реле. Способ изготовления микроэлектромеханических реле включает последовательное формирование на подложке контактной металлизации, состоящей из управляющего электрода, двух нижних...
Тип: Изобретение
Номер охранного документа: 0002511272
Дата охранного документа: 10.04.2014
27.05.2014
№216.012.cb31

Цифровой измеритель частоты

Изобретение относится к области измерительной техники и приборостроения, предназначено для измерения частоты следования импульсных сигналов. Цифровой измеритель частоты включает блок логический, блок реверсивного счета, блок логический формирования временного интервала измерения, блок...
Тип: Изобретение
Номер охранного документа: 0002517783
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd07

Микросистемное устройство терморегуляции поверхности космических аппаратов

Изобретение относится к области микроэлектроники - устройствам микросистемной техники, выполненным по технологиям микрообработки кремния, и может быть использовано при создании систем терморегуляции нагреваемой поверхности космических аппаратов, либо иных систем, обеспечивающих микроперемещения...
Тип: Изобретение
Номер охранного документа: 0002518258
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d535

Система автоматического управления работой модема малоразмерного космического аппарата с наземным центром управления полетами спутниковой связной системы

Изобретение относится к системам связи с использованием квазиглобальных спутниковых связных систем (ССС) и может быть использовано для повышения надежности канала связи малоразмерного космического аппарата (МКА) с центром управления полетом (ЦУП). Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002520352
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.df04

Микромеханическая система

Изобретение относится к микросистемной технике для создания электростатически управляемых микромеханических резонаторов для датчикопреобразующей аппаратуры и микрореле для коммутации СВЧ и НЧ аналоговых электрических цепей. Система содержит микромеханический исполнительный элемент,...
Тип: Изобретение
Номер охранного документа: 0002522878
Дата охранного документа: 20.07.2014
10.08.2014
№216.012.e673

Способ автоматизированной калибровки следящих антенных систем

Изобретение относится к области создания антенных систем с функцией слежения за подвижным источником сигнала. Достигаемый технический результат - возможность быстрой калибровки следящих антенных систем с высокой точностью и надежностью. Указанный результат достигается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002524788
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e89e

Способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для его реализации

Группа изобретений относится к методам и средствам траекторных измерений космических аппаратов (КА) с использованием линий радиосвязи. В способе используют три территориально разнесенные измерительные станции (ИС). Первая ИС работает в запросном когерентном режиме и измеряет относительные...
Тип: Изобретение
Номер охранного документа: 0002525343
Дата охранного документа: 10.08.2014
Показаны записи 21-30 из 42.
26.08.2017
№217.015.e736

Способ измерения электрических параметров и характеристик без демонтажа объекта исследования, а также устройства для его реализации

Изобретения могут использоваться в электронной, космической, авиационной, военной и других отраслях промышленности. Способ измерения электрических параметров или характеристик объекта исследования, установленного в электронном устройстве или блоке без демонтажа объекта исследования с печатной...
Тип: Изобретение
Номер охранного документа: 0002627281
Дата охранного документа: 04.08.2017
19.01.2018
№218.016.01e6

Способ изготовления сквозных металлизированных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники и полупроводниковых приборов, содержащих в своей структуре металлизированные и/или неметаллизированные сквозные отверстия в кремнии различного...
Тип: Изобретение
Номер охранного документа: 0002629926
Дата охранного документа: 04.09.2017
10.05.2018
№218.016.46c3

Тест-реле с механической активацией аксессуаром измерительного прибора

Изобретение может использоваться в электронной, космической, авиационной, военной промышленности при создании электронной аппаратуры, предполагающей проведение диагностики, настройки, поиск неисправностей, входной и выходной контроль. Основное назначение изобретения - обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002650502
Дата охранного документа: 16.04.2018
09.06.2018
№218.016.5c91

Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002656126
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.63e1

Способ обработки полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной свч- плазмы при атмосферном давлении

Изобретение относится к технологии микроэлектроники, а именно изготовлению изделий микроэлектроники, содержащих в конструкции клеевое адгезионное соединение «полиимидная пленка-металл». В частности, предложена обработка полиимидной пленки в факеле неравновесной гетерогенной низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002657899
Дата охранного документа: 18.06.2018
23.09.2018
№218.016.8a1e

Ступня ноги шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002667594
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a2a

Ступня ноги шагающего космического микромеханизма

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, и выполнения задач напланетных миссий. Ступня выполнена в виде пластины с нанесенным на площадь ее...
Тип: Изобретение
Номер охранного документа: 0002667593
Дата охранного документа: 21.09.2018
03.11.2018
№218.016.99ff

Способ создания двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями

Способ создания двустороннего топологического рисунка металлизации позволит повысить технологичность и воспроизводимость при формировании двустороннего топологического рисунка в металлизации на подложках со сквозными металлизированными микроотверстиями. При формировании топологического рисунка...
Тип: Изобретение
Номер охранного документа: 0002671543
Дата охранного документа: 01.11.2018
19.12.2018
№218.016.a86b

Ступня ноги для шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена с...
Тип: Изобретение
Номер охранного документа: 0002675327
Дата охранного документа: 18.12.2018
29.03.2019
№219.016.f746

Тепловой микромеханический актюатор и способ его изготовления

Изобретение относится к области микросистемной техники и может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы, обеспечивающие преобразование «электрический сигнал - перемещение» и/или «изменение...
Тип: Изобретение
Номер охранного документа: 0002448896
Дата охранного документа: 27.04.2012
+ добавить свой РИД