×
18.05.2019
219.017.5957

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ И СКОРОСТИ ДВИЖЕНИЯ НИЖНЕЙ ГРАНИЦЫ ОБЛАЧНОСТИ

Вид РИД

Изобретение

Аннотация: Способ может быть использован для метеорологических наблюдений, например дистанционного определения смерчей, грозовых состояний облачности, тайфунов, а так же наблюдения движения летательных аппаратов. В способе посредством широкопанорамной автоматизированной сканирующей системы осуществляют сканирование в диапазоне собственного излучения поля облачности и регистрируют набор кадров, которые представляют собой набор матриц, где по горизонтали - N значений, а по вертикали - М, и каждое из N*M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере. Осуществляют изменение формы матрицы для перехода от угловых координат к декартовым координатам, производят попарное сравнение всех соседних кадров и для каждой пары определяют направление сдвига, для чего определяют наиболее вероятный сдвиг между кадрами. Вычисляют сдвиги для всего набора кадров и строят ломаную линию, усреднение которой дает вектор движения нижней границы облачности, по которому определяют направление и скорость ее движения. Технический результат - автоматизация и повышение точности определения направления и скорости движения нижней границы облачности в реальном масштабе времени и расширение функциональных возможностей метеорологических наблюдений. 2 ил.

Изобретение относится к метеорологии, к способам для определения физических параметров атмосферы, и позволяет определять направление и скорость движения нижней границы облачности (НГО).

Известен способ измерения высоты, скорости и направления движения нижней границы облаков посредством измерителя [2], заключающийся в измерении угловых координат выбранного участка нижней границы облачности относительно двух неподвижных матричных фотоприемников, имеющих регулярную структуру положения пикселей, и расположенных таким образом, что их оптические оси имеют известные вертикальные и горизонтальные углы и лежат в одной плоскости, а углы обзора перекрываются на определенной высоте между ними. Недостатками данного способа являются проблема выбора и идентификации одного и того же фрагмента облачности, которая выполняется вручную оператором, повышенная чувствительность системы к погрешностям фотоприемников, сравнительно высокая стоимость изготовления и эксплуатации измерителя, малый участок обзора и, как следствие, сложности и высокой погрешности в определении направления и скорости движения в случаях присутствия распределенного поля облачности, превышающего поле зрения прибора, когда идентификация выбранного участка нижней границы облачности невозможна, то есть такая система может работать только при высоких контрастах (облако-просвет) излучения "разорванных форм облачности": кучевых, слоисто-кучевых, мощно-кучевых облаков. Способ не может использоваться при вихревых структурах форм облачности.

Задачей, на решение которой направлено данное изобретение, является автоматизация процесса сканирования и анализа облачного поля.

Технический результат - автоматизация, повышение точности определения направления и скорости движения нижней границы облачности как днем, так и ночью в реальном масштабе времени по смещению ее пространственной структуры собственного излучения и расширение функциональных возможностей метеорологических наблюдений.

Сравнение заявляемого способа с прототипом позволило установить соответствие его условию "новизна". При сравнении заявляемого способа с другими известными техническими решениями не выявлены сходные признаки, что позволяет сделать вывод о соответствии условию "изобретательский уровень".

Способ поясняется чертежами. На фиг.1 приведен пример отображения кадра изображения по собственному излучению облачности (темный цвет) в проекции на плоскость; на фиг.2 приведено изображение преобразованного кадра в выбранный момент времени и через интервал Δt.

Указанный технический результат при осуществлении изобретения достигается посредством широкопанорамной автоматизированной сканирующей системы [1], которая осуществляет непрерывное круговое сканирование в диапазоне собственного излучения поля облачности по альмукантарату за время, при котором пространственная структура излучения облачного поля остается неизменной. За это время регистрируется ряд значений энергетической яркости, или радиационной температуры облачного поля через каждый градус, или минуты дуги, то есть определяется высота НГО, однозначно связанной с радиационной температурой. После завершения записи данных угол наклона сканирующего зеркала изменяется, цикл повторяется, регистрируется следующая строка. Через заданное количество строк сканирующее зеркало широкопанорамной автоматизированной сканирующей системы возвращается в исходное начальное положение, цикл повторяется, записывается следующий кадр.

Таким образом, регистрируется набор матриц, где по горизонтали - N значений, а по вертикали - М. Каждое из N*M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере. Оценив высоту НГО по значению энергетической яркости радиационной температуры, строится проекция собственного излучения облачности на плоскость (фиг.1). Затем осуществляется

формы матрицы для перехода от угловых координат к декартовым координатам (фиг.2). Поскольку изображение проекции облачного поля строится вне зависимости от его реальной высоты, то линейный масштаб отдельной ячейки зависит от конкретной высоты НГО и определяется по формуле

,

где Ннго - высота НГО (в метрах), Hpxl - условная высота НГО (в пикселях) для построения изображения проекции НГО, А - выбранный размер ячейки (в пикселях).

Для определения вектора движения ряда кадров производится попарное сравнение всех соседних кадров, и для каждой пары определяется направление сдвига. Для определения сдвига между матрицами M1 и М2 (фиг.2) вычисляется ряд значений меры различия между матрицей M1 и смещенной матрицей М2. В качестве меры различия используется суммарное значение разностей излучения ячеек

Минимальному значению меры различия соответствует пара значений (Δх,Δу) - наиболее вероятное смещение второго кадра относительно первого.

Вычислив смещения для всего набора кадров, можно построить ломаную линию, усреднение которой даст вектор движения НГО, на выбранном интервале времени. Координаты вектора (х, у) показывают, что на выбранном интервале времени НГО сместилась от начального положения на х ячеек по оси абсцисс и у ячеек по оси ординат. Перейти к метрическим координатам можно исходя из линейного размера ячейки. Зная интервал времени Δt, в течение которого производились измерения, и координаты вектора (х, у) определяются составляющие скорости Vx и Vy, и затем скорость V

и направление движения НГО (угол φ)

Точность вычисления скорости и направления движения достигается за счет суммирования и усреднения множества отдельных векторов на малых промежутках в реальном масштабе времени.

Источники информации

1. Патент РФ №2331853, МПК G01J 3/06, изобретение "Устройство распознавания форм облачности".

2. Патент РФ №2321029, МПК G01W 1/00, изобретение "Способ определения высоты, направления и скорости движения нижней границы облачности".

Способ определения направления и скорости движения нижней границы облачности в заданном интервале времени, в котором посредством широкопанорамной автоматизированной сканирующей системы осуществляют сканирование в диапазоне собственного излучения поля облачности, регистрируют набор кадров, которые представляют собой набор матриц, где по горизонтали N значений, а по вертикали - М, и каждое из N·M значений представляет собой конкретную область - изображение в инфракрасной области на небесной сфере, затем осуществляют изменение формы матрицы для перехода от угловых координат к декартовым координатам, производят попарное сравнение всех соседних кадров и для каждой пары определяют направление сдвига, для чего по минимальному значению меры различия между соответствующими матрицами определяют наиболее вероятный сдвиг между кадрами, вычисляют сдвиги для всего набора кадров и строят ломаную линию, усреднение которой дает вектор движения нижней границы облачности в заданном интервале времени, по которому определяют направления и скорости движения нижней границы облачности в заданном интервале времени.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 132.
10.07.2015
№216.013.5f49

Способ капитального ремонта турбореактивного двигателя (варианты) и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта турбореактивного двигателя, при котором создают ротационно-обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555934
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4a

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555935
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4b

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя (ГТД), при котором создают ротационно обновляемый запас восстановленных деталей: модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555936
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4c

Способ капитального ремонта газотурбинного двигателя (варианты) и газотурбинный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии пополняемой группы газотурбинных двигателей и газотурбинный двигатель, отремонтированный этим способом

Изобретение относится к энергетике. Способ капитального ремонта газотурбинного двигателя, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и используют их в...
Тип: Изобретение
Номер охранного документа: 0002555937
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4d

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя (ГТД), при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми. Помодульно собирают двигатель, который...
Тип: Изобретение
Номер охранного документа: 0002555938
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4e

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель (ТРД), выполненный двухконтурным, двухвальным, содержит не менее восьми модулей, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания, воздухо-воздушный теплообменник, турбины...
Тип: Изобретение
Номер охранного документа: 0002555939
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f4f

Способ серийного производства газотурбинного двигателя и газотурбинный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства газотурбинного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555940
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f50

Турбореактивный двигатель

Изобретение относится к энергетике. Турбореактивный двигатель выполнен двухконтурным, двухвальным, содержит не менее восьми модулей, смонтированных по модульно-узловой системе, включая компрессоры высокого и низкого давления, разделенные промежуточным корпусом, основную камеру сгорания,...
Тип: Изобретение
Номер охранного документа: 0002555941
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f51

Способ серийного производства турбореактивного двигателя и турбореактивный двигатель, выполненный этим способом

Изобретение относится к энергетике. Способ серийного производства турбореактивного двигателя, при котором изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя, собирают модули в количестве не менее восьми - от компрессора низкого давления до...
Тип: Изобретение
Номер охранного документа: 0002555942
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5f53

Способ капитального ремонта турбореактивного двигателя и турбореактивный двигатель, отремонтированный этим способом (варианты), способ капитального ремонта партии, пополняемой группы турбореактивных двигателей и турбореактивный двигатель, отремонтированный этим способом (варианты)

Изобретение относится к энергетике. Способ капитального ремонта авиационных турбореактивных двигателей, при котором создают ротационно обновляемый запас восстановленных деталей - модулей, узлов, сборочных единиц, оставшихся после замены от предыдущих ранее отремонтированных двигателей, и...
Тип: Изобретение
Номер охранного документа: 0002555944
Дата охранного документа: 10.07.2015
+ добавить свой РИД