×
18.05.2019
219.017.56b8

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРИСТО-ВОЛОКНИСТОГО МЕТАЛЛИЧЕСКОГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие температуры 450-600°С, которые также могут применяться для изготовления других конструкций с высокими требованиями к их прочности и жаростойкости, таких как высокотемпературные фильтры, виброизоляционные материалы и другие. Предварительно формируют металлический мат из волокнистой массы, состоящей из металлических волокон длиной не менее 100 мм, путем ее иглопробивания с плотностью 0,5×10-1×10 м. Диаметр металлических волокон из жаростойких металлов или сплавов составляет 15-30 мкм. Сформированный металлический мат спекают в контейнере, имеющем ограничители, в вакууме или в защитной атмосфере при температуре 0,75-0,85 от температуры плавления материала. Полученный материал характеризуется повышенными прочностью, жаростойкостью и акустической эффективностью. 3 з.п. ф-лы, 1 табл.

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций (ЗПК) горячего тракта газотурбинного двигателя (ГТД) на рабочие температуры 450-600°С, которые также могут применяться для изготовления других конструкций с высокими требованиями к их прочности и жаростойкости, таких как высокотемпературные фильтры, виброизоляционные материалы и др.

Пористые металлические материалы известны довольно давно и благодаря сочетанию своих свойств (большой пористости при достаточно высокой прочности и гибкости) находят свое применение в различных областях техники.

Пористо-волокнистые металлические материалы являются наиболее пригодными для создания высокотемпературных ЗПК. Они обладают эффективными поглощающими свойствами, которые практически не зависят от уровня звукового давления и обеспечивают снижение шума в широкой области частот. Такие материалы имеют высокие характеристики температурной стойкости, пожаробезопасности, грибостойкости и мало абсорбируют различные жидкости.

На сегодняшний день известно несколько способов получения пористо-волокнистых металлических материалов. Все они имеют ряд недостатков и ограничений применения.

Известен способ получения пористого металлического материала, включающий изготовление суспензии волокон в жидкой среде с последующим осаждением суспензии на вибрирующее перфорированное основание или вводом суспензии в форму с пористыми стенками. После дренажа жидкости получают лист или изделие заданной формы, которые затем прессуются и спекаются в низкоплотный материал (патент США №3.127.668).

Недостатки этого способа - невысокая пористость получаемых материалов и сложность приготовления суспензии из длинных металлических волокон в жидкой среде. Кроме того, частички жидкости или продукты ее реакции с металлическими волокнами остаются на поверхности волокон, что отрицательно сказывается на дальнейшем спекании.

Известен способ получения пористого металлического материала из тонких металлических волокон воздушным наслоением и последующим механическим скреплением или прессованием пористой структуры (патент США №3.469.297).

Недостатки этого способа - отсутствие процесса спекания и небольшое поперечное сечение волокон (наилучшие результаты при использовании этой технологии при толщине волокон 4 мкм), что снижает прочность при получении материала с большой пористостью.

Известен способ изготовления армированного нетканого металлического материала обработкой массы свободных металлических нитей с использованием обычного оборудования текстильной промышленности для получения полотна из металлических нитей и наложением нескольких таких полотен одно на другое для получения многослойной структуры. Между полотнами подкладывают армирующую подложку, вследствие чего образуется армированный нетканый металлический листовой материал с высокими прочностью и долговечностью (патент США №5.972.814).

Недостатки этого способа - использование упрочняющей подложки, что снижает общую пористость волокнистого материала и необходимость использования металлических волокон с неравномерным поперечным сечением (шероховатой поверхностью) для осуществления сцепления между отдельными волокнами.

За прототип принят способ получения пористо-волокнистых металлических материалов с однородной структурой, включающий предварительное формирование металлического мата из волокнистой массы и дальнейшее его спекание. Формирование металлического мата осуществляется путем просеивания измельченных металлических волокон на подложку с образованием одного или более слоев. При этом каждый слой покрывается адгезивом или связующим веществом, после чего на него наносится последующий слой и т.д. до получения мата необходимой толщины. Затем мат высушивают, подвергают спеканию и, если это необходимо, прессованию (патент США №3.811.976).

Недостатки способа-прототипа:

- несмотря на возможность получения пористо-волокнистого металлического материала с высокой пористостью, известный способ не обеспечивает высокие эксплуатационные свойства этого материала при рабочей температуре 450-600°С в условиях горячего тракта ГТД;

- данный способ не обеспечивает получения пористого материала из длинных металлических волокон;

- в способе-прототипе при изготовлении пористого металлического материала используется связующее вещество, что не исключает наличия его остатков или продуктов его реакции перед спеканием.

Технической задачей данного изобретения является разработка способа изготовления пористо-волокнистого металлического материала из длинных металлических волокон (от 100 мм), с высокой прочностью и жаростойкостью, работоспособного при температурах 450-600°С в условиях горячего тракта ГТД, с низким удельным весом и большой пористостью (до 95%), обладающего высокой акустической эффективностью; без использования в процессе изготовления такого материала различных связующих веществ, жидкостей и других дополнительных материалов, наличие которых отрицательно сказывается при спекании пористо-волокнистого металлического материала на его свойствах.

Для решения поставленной задачи предложен способ получения пористо-волокнистого металлического материала, включающий предварительное формирование металлического мата из волокнистой массы и дальнейшее его спекание, отличающийся тем, что металлический мат формируют путем иглопробивания волокнистой массы, состоящей из металлических волокон длиной не менее 100 мм, с плотностью пробивания 0,5×104-1×104 м-2.

В качестве исходного материала могут использоваться длинные металлические волокна с диаметром предпочтительно от 15 до 30 мкм, полученные методом экстракции расплава или деформацией.

Спекание осуществляется в вакууме или защитной атмосфере при температуре 0,75-0,85 от температуры плавления материала, что позволяет получить достаточную прочность в точках контакта волокон.

Спекание проводят в контейнерах с размерами, соответствующими геометрическим параметрам пористо-волокнистого материала, под нагрузкой, с использованием металлических или керамических оправок-ограничителей, обеспечивающих при спекании требуемую высоту пористо-волокнистого материала.

В качестве материала волокон могут быть использованы металлы или сплавы с высокими жаростойкими свойствами, например, на основе железа или никеля.

Предлагаемый способ получения пористо-волокнистых металлических материалов иглопробиванием волокнистой массы с плотностью пробивания 0,5×104-1×104 м-2 с последующим спеканием металлического мата позволяет получать материалы из длинных металлических волокон с заданной пористостью, обладающие высокой акустической эффективностью применительно, например, к авиационным турбореактивным двигателям, характеризующиеся достаточно равномерным спектром поглощения на частотах выше 1,6 кГц с эффективностью около 6-8 дБ в условиях, близких к существующим в ГТД.

Выбранная длина волокон и значения плотности пробивания волокнистой массы обеспечивают достаточные прочностные и пластические характеристики материала при его большой пористости и высокие звукопоглощающие свойства. При плотности пробивания менее 0,5×104 м-2 пористость волокнистого материала не увеличивается, а его прочность уменьшается. При иглопробивании с плотностью более 1×104 м-2 пористость готового пористо-волокнистого металлического материала не превышает 90%, при этом его прочность увеличивается незначительно.

Примеры осуществления

Пример №1

В качестве исходного материала использовали проволоку из сплава марки Х20Н80 (Тпл=1400°С) длиной 100 мм диаметром 30 мкм.

Формирование волокнистой массы проводили на установке для получения волокнистого слоя с равномерным распределением плотности металлических волокон по объему.

Иглопробивание проводили на установке скрепления волокнистой массы с движущимся игольным столом с пробивными иглами при плотности прокалывания 0,5×104 м-2.

В результате иглопробивания был получен нетканый мат с пористостью 98%.

Спекание проводили в контейнере с металлическими ограничителями под нагрузкой при вакууме 10-4 мм рт.ст. и температуре 1150°С в течение 2,5 часов. Высоту ограничителей выбирали исходя из заданных параметров пористого материала.

В результате был получен пористо-волокнистый металлический материал с пористостью 95%.

Пример №2

Металлические волокна из сплава марки Х20Н80 диаметром 15-20 мкм, длиной 150 мм, полученные методом экстракции висящей капли расплава, подвергали войлокованию на установке формирования волокнистой массы. Полученную массу пробивали иглами с плотностью прокалывания 1×104 м-2. Полученный нетканый мат с пористостью 96% спекали в контейнере под нагрузкой с металлическими ограничителями при вакууме 10-4 мм рт.ст. и температуре 1100°С в течение 2,5 часов.

В результате был получен пористо-волокнистый металлический материал с пористостью 85%.

Пример №3

Металлические волокна из сплава марки 12Х18Н9Т (Тпл=1450°С) диаметром 15 мкм, длиной 300 мм после войлокования пробивали иглами с плотностью прокалывания 0,8×10-4 м-2. Полученный нетканый мат с пористостью 97% спекали в контейнере под нагрузкой с металлическими ограничителями при вакууме 10-4 мм рт.ст. и температуре 1200°С в течение 3 часов.

В результате был получен пористо-волокнистый металлический материал с пористостью 85%.

Пример №4

По известному способу (прототипу) был изготовлен пористо-волокнистый металлический материал из волокон сплава марки Х20Н80 диаметром 50 мкм, длиной 5-10 мм, представляющий собой волокнистый мат с пористостью 85%.

Сравнительные результаты исследований образцов материалов, изготовленных по предлагаемому способу и прототипу, представлены в таблице 1, где примеры 1-3 - предлагаемый способ, пример 4 - прототип.

Из таблицы видно, что материалы, изготовленные по предлагаемому способу, имеют пористость до 95%, большие значения коэффициента звукопоглощения, жаростойки и значительно превосходят материал, изготовленный по способу-прототипу, по прочности.

Кроме того, использование в предлагаемом способе длинных металлических волокон при изготовлении пористого материала для высокотемпературных ЗПК авиадвигателя позволяет уменьшить постепенное разрушение пористо-волокнистых металлических материалов под действием звука высокой интенсивности.

Полученный материал может подвергаться механической обработке и калибровке на прессе под необходимые размеры при сохранении равномерной структуры.

Таким образом, применение предлагаемого способа позволяет получать пористо-волокнистые металлические материалы из длинных волокон с большой прочностью и жаростойкостью, с низким удельным весом, пористостью до 95%, обладающие высокой акустической эффективностью, работоспособные при температуре 450-600°С.

Предлагаемый способ является более экономичным, позволяет исключить процесс прессования и использование различных связующих веществ.

Звукопоглощающие конструкции, выполненные из полученных пористо-волокнистых материалов, обладают высокими эксплуатационными характеристиками, необходимыми для изделий нового поколения.

Таблица 1
№ примераМатериал волоконПористость, %Жаростойкость (при температуре 600°С, выдержке 100 часов), %Коэффициент звукопоглощения, ασВ, кг/смАкустическая эффективность, дБ
1Х20Н80951,8911506-8
2Х20Н80851,520,92806-8
312Х18Н9Т852,000,93006-8
4Х20Н80852,010,750разрушился при испытании

1.Способполученияпористо-волокнистогометаллическогоматериала,включающийпредварительноеформированиеметаллическогоматаизволокнистоймассыидальнейшееегоспекание,отличающийсятем,чтометаллическийматформируютизволокнистоймассы,состоящейизметаллическихволокондлинойнеменее100мм,путемиглопробиваниясплотностьюпробивания0,5×10-1×10м.12.Способпоп.1,отличающийсятем,чтодиаметрметаллическихволоконсоставляет15-30мкм.23.Способпоп.1,отличающийсятем,чтометаллическиеволокнавыполняютизжаростойкихметалловилисплавов.34.Способпоп.1,отличающийсятем,чтоспеканиеметаллическогомататребуемойвысотыпроводятввакуумеиливзащитнойатмосферепритемпературе0,75-0,85температурыплавленияматериалавконтейнересограничителями.4
Источник поступления информации: Роспатент

Показаны записи 221-230 из 354.
10.05.2018
№218.016.40d6

Способ получения изделия из гранулируемого жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из гранулируемого жаропрочного никелевого сплава, и может быть использовано для изготовления дисков газотурбинных двигателей, работающих при температурах до 800°С и выше. Способ получения изделия из гранулируемого...
Тип: Изобретение
Номер охранного документа: 0002649103
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4333

Способ определения релаксации напряжений в вершине трещины или концентраторе напряжений

Изобретение относится к испытательной технике и может быть использовано для оценки работоспособности металлов в конструкции. Сущность: осуществляют нагружение образца с трещиной или с концентратором напряжений, в котором ось приложения нагрузки и ось действия распорного болта разнесены,...
Тип: Изобретение
Номер охранного документа: 0002649673
Дата охранного документа: 04.04.2018
29.05.2018
№218.016.58ca

Способ изготовления штамповок дисков из прессованных заготовок высоколегированных жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности, а также в энергетическом машиностроении в качестве способа получения заготовок дисков газотурбинных...
Тип: Изобретение
Номер охранного документа: 0002653386
Дата охранного документа: 08.05.2018
09.06.2018
№218.016.5a5e

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С. Жаропрочный литейный сплав...
Тип: Изобретение
Номер охранного документа: 0002655483
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b11

Жаропрочный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С. Жаропрочный литейный сплав...
Тип: Изобретение
Номер охранного документа: 0002655484
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.6034

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, и может быть использовано для изготовления деталей горячего тракта газотурбинных двигателей и установок, длительно работающих при температурах до 1000°C. Жаропрочный литейный сплав на основе никеля содержит,...
Тип: Изобретение
Номер охранного документа: 0002656908
Дата охранного документа: 07.06.2018
19.07.2018
№218.016.7220

Сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, используемым для получения порошков, применяющихся для получения деталей с использованием аддитивных технологий. Сплав на основе алюминия содержит, мас. %: кремний 8,5-11,5, магний 0,3-1,0, медь 0,3-1,2,...
Тип: Изобретение
Номер охранного документа: 0002661525
Дата охранного документа: 17.07.2018
19.07.2018
№218.016.7221

Способ получения изделий из жаропрочных никелевых сплавов

Изобретение относится к области металлургии, в частности к способам получения изделий из высокожаропрочных деформируемых никелевых сплавов, и может найти применение в авиационной промышленности в качестве метода получения заготовок дисков газотурбинных двигателей (ГТД). Способ получения изделия...
Тип: Изобретение
Номер охранного документа: 0002661524
Дата охранного документа: 17.07.2018
24.07.2018
№218.016.73c3

Способ получения оксидного покрытия

Изобретение относится к области металлургии, в частности к получению оксидного покрытия на заготовках из деформируемых титановых сплавов, используемых для производства листов способом горячей прокатки многослойных пакетов. Способ получения оксидного покрытия на заготовках из деформируемых...
Тип: Изобретение
Номер охранного документа: 0002661969
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73e1

Жаростойкое покрытие

Изобретение относится к жаростойким покрытиям. Жаростойкое покрытие содержит, масс. %: 12,0-20,5 АlO, 3,0-8,0 СаО, 0,8-3,0 MgO, 6,0-11,0 ВаО, 2,0-5,0 ТiO, 5,5-10,0 ВO, 0,5-5,5 SiB, 1,0-11,0 25BaO-25AlO-50SiO, SiO - остальное. Технический результат - снижение разницы между рабочей температурой и...
Тип: Изобретение
Номер охранного документа: 0002661942
Дата охранного документа: 23.07.2018
Показаны записи 221-230 из 333.
20.01.2018
№218.016.144c

Способ производства литейных жаропрочных наноструктурированных коррозионно-стойких сплавов на никелевой основе

Изобретение относится к области металлургии, в частности к производству литейных жаропрочных углеродсодержащих и безуглеродистных сплавов на никелевой основе, и может быть использовано для литья лопаток газотурбинных двигателей. Способ производства литейных жаропрочных сплавов на никелевой...
Тип: Изобретение
Номер охранного документа: 0002634828
Дата охранного документа: 03.11.2017
20.01.2018
№218.016.171c

Способ термомеханической обработки высоколегированных псевдо-β титановых сплавов, легированных редкими и редкоземельными металлами

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке высоколегированных псевдо-β титановых сплавов и изделий из них, и может быть использовано в авиационной технике. Способ изготовления листовых полуфабрикатов из псевдо-β титановых сплавов включает...
Тип: Изобретение
Номер охранного документа: 0002635650
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1cff

Огнезащитная теплоизоляционная панель

Изобретение относится к огнезащитным теплоизоляционным изделиям, выполненным в виде панели, используемым в различных областях техники, для защиты от воздействия открытого пламени спасательного средства и инженерных сооружений, работающих в акваториях морей. Огнезащитная теплоизоляционная...
Тип: Изобретение
Номер охранного документа: 0002640555
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1d01

Композиция для изготовления теплозащитного покрытия и способ ее изготовления

Изобретение относится к теплозащитным покрытиям (материалам), предназначенным для защиты узлов и агрегатов, работающих в условиях воздействия аэродинамических и газодинамических тепловых потоков. Описаны композиция для изготовления теплозащитного покрытия и способ ее изготовления. Композиция...
Тип: Изобретение
Номер охранного документа: 0002640523
Дата охранного документа: 09.01.2018
13.02.2018
№218.016.206d

Гибкий теплозвукоизоляционный волокнистый материал низкой плотности

Изобретение относится к теплозвукоизоляционным материалам, в частности к волокнистым материалам авиационного назначения с пониженным удельным весом, высокими тепловыми свойствами, отвечающим требованиям пожарной безопасности. Обеспечение надежной работы теплоизоляции в условиях циклических...
Тип: Изобретение
Номер охранного документа: 0002641495
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.21c3

Слоистый гибридный композиционный материал и изделие, выполненное из него

Изобретение относится к слоистым гибридным композиционным материалам для применения в элементах планера, прежде всего в конструкции обшивки крыла самолета, и другой транспортной технике. Композиционный материал содержит внешние и внутренние слои из Al-Li сплавов и слои стеклопластиков на базе...
Тип: Изобретение
Номер охранного документа: 0002641744
Дата охранного документа: 22.01.2018
04.04.2018
№218.016.30a2

Композиция для изготовления огнезащитного покрытия и способ ее изготовления

Изобретение относится к материалам, предназначенным для огнезащиты конструктивных элементов, работающих в экстремальных условиях воздействия пламени, возникшего в результате пожара. Описана композиция для изготовления огнезащитного покрытия, включающая полиметилсилоксановый или...
Тип: Изобретение
Номер охранного документа: 0002644888
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.30ab

Способ получения металлокерамической порошковой композиции

Изобретение относится к получению металлокерамической порошковой композиции, использующейся для изготовления деталей методом аддитивных технологий. Способ включает приготовление порошковой смеси и механический синтез смеси в планетарной мельнице. Порошковую смесь готовят путем смешивания...
Тип: Изобретение
Номер охранного документа: 0002644834
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.3962

Способ термомеханической обработки титановых сплавов

Изобретение относится к области металлургии, в частности к высокотемпературной термомеханической обработке титановых сплавов. Способ термомеханической обработки титановых сплавов включает многократные нагревы до температуры выше и ниже температуры полиморфного превращения, деформации,...
Тип: Изобретение
Номер охранного документа: 0002647071
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.40d6

Способ получения изделия из гранулируемого жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из гранулируемого жаропрочного никелевого сплава, и может быть использовано для изготовления дисков газотурбинных двигателей, работающих при температурах до 800°С и выше. Способ получения изделия из гранулируемого...
Тип: Изобретение
Номер охранного документа: 0002649103
Дата охранного документа: 29.03.2018
+ добавить свой РИД