×
18.05.2019
219.017.5677

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНЫХ АККУМУЛЯТОРНЫХ БАТАРЕЙ СИСТЕМЫ ЭЛЕКТРОПИТАНИЯ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам эксплуатации никель-водородных аккумуляторных батарей (НВАБ) в автономных системах электропитания космических аппаратов (СЭКА). Техническим результатом изобретения является повышение надежности эксплуатации НВАБ. Согласно изобретению способ эксплуатации НВАБ СЭКА заключается в том, что две или более НВАБ циклируют в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания, степень заряда НВАБ ограничивают по уровню срабатывания сигнальных датчиков давления, размещенных в отдельных аккумуляторах каждой НВАБ, контролируют параметры каждой НВАБ, периодически проводят формовочные циклы НВАБ путем глубокого их разряда, оценивают состояние НВАБ, затем периодически, например раз в 6-9 месяцев, вводят запрет заряда для одной из НВАБ, в качестве разрядной нагрузки используют бортовую аппаратуру космического аппарата, критерием ограничения глубины разряда выбирают величину напряжения НВАБ, причем значение граничного уровня напряжения устанавливают в вольтах равным числу n либо (n+1) аккумуляторов в НВАБ, при достижении которого снимают запрет заряда НВАБ, включая тем самым ее в штатную работу, значения зарядной емкости срабатывания сигнального датчика давления и максимального напряжения НВАБ при заряде, определяемые в процессе завершения формовочного цикла, используют для оценки состояния НВАБ и прогнозирования ее деградации, аналогичную последовательность операций повторяют для последующей НВАБ, при этом промежуток времени от завершения формовочного цикла одной НВАБ до начала формовочного цикла другой НВАБ выбирают исходя из температурного режима отформованной НВАБ. 2 ил.

Предлагаемое изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите.

В процессе всего активного срока существования современных КА на низкой околоземной орбите производится 10000 и более зарядно-разрядных циклов АБ, и подобный режим работы СЭП лучше всего обеспечивают никель-водородные аккумуляторные батареи (НВАБ).

Особенностью НВАБ является то, что все последовательно соединенные аккумуляторы заряжаются и разряжаются одним и тем же количеством электрического заряда (А·ч). В идеальном случае, если начальное состояние аккумуляторов одинаково, не должно быть никаких изменений в их относительных степенях заряженности. Однако вследствие разницы в скорости саморазряда последовательно соединенные аккумуляторы приобретают различное состояние заряженности. Любое отклонение, вызванное дисперсией начальных характеристик саморазряда, градиентом температур внутри НВАБ и процессом старения, может увеличить разброс в степенях заряженности аккумуляторов, что приводит к деградации характеристик НВАБ, и более того, при отсутствии систем балансировки состояния заряда может привести к снижению надежности работы НВАБ. Существует еще так называемый «эффект памяти», связанный с уменьшением емкости НВАБ при длительном циклировании на небольшую глубину - (10-20)%. Именно такая глубина циклирования выбирается при эксплуатации АБ на низких околоземных орбитах (B.C.Багоцкий, A.M.Скундин. Химические источники тока. М.: Энергоиздат, 1981). Поэтому для выравнивания аккумуляторов по емкости, устранения так называемого «эффекта памяти» и оценки состояния АБ необходимо периодически проводить восстановительные (формовочные) циклы, которые представляют собой практически полный разряд и заряд АБ.

Известен способ эксплуатации никель-водородных аккумуляторных батарей по патенту №2084055, МПК Н01М 10/44 (аналог), согласно которому заряд НВАБ ограничивают исходя из плотности водорода, рассчитанной на основании измеренных давления и температуры аккумуляторов. При этом обеспечивается заряд аккумуляторной батареи до уровня (60-80)% от номинальной емкости.

Недостатком этого способа является низкая надежность эксплуатации системы электропитания, так как для АБ не предусмотрены формовочные циклы, а из-за разбаланса аккумуляторов по емкости реальная емкость АБ определяется аккумулятором с наименьшей емкостью, что в конечном итоге и снижает надежность эксплуатации АБ.

Наиболее близким техническим решением является способ эксплуатации аккумуляторной батареи по патенту РФ №2289178, заключающийся в том, что проводят зарядно-разрядные циклы, осуществляют контроль напряжения каждого аккумулятора и батареи в целом, определяют текущую разрядную и зарядную емкости, а также ток заряда, заряд АБ проводят постоянным током до величины (0,6-0,8) номинальной емкости. Перед началом теневых участков геостационарной орбиты выполняют восстановительный разрядно-зарядный цикл АБ, при этом АБ разряжают на разрядное сопротивление в течение 40-50 часов, причем заряд прекращают после снижения напряжения АБ до заданной величины, затем АБ заряжают, подключая ее в штатную схему СЭП.

Недостатком этого способа является также низкая надежность эксплуатации СЭП в частности и недостаточная живучесть КА в целом. Это связано с тем, что процесс проведения восстановительного разряд-заряда (формовочного цикла) занимает длительное время, и на это время аккумуляторная батарея выводится из эксплуатации. Для геостационарных орбит это приемлемо, т.к. теневые орбиты занимают 90 суток в году, все остальное время КА находится на освещенном участке орбиты, электропитание осуществляется от солнечных батарей и вывод из эксплуатации одной АБ на длительное время не сказывается на живучести и надежности эксплуатации КА. Для низкоорбитальных космических аппаратов вывод из эксплуатации одной из батарей на длительное время может существенно снизить живучесть и надежность эксплуатации АБ в частности и КА в целом, т.к. теневые участки орбиты (возникают) каждые полтора часа.

Целью предлагаемого изобретения является повышение надежности эксплуатации никель-водородной аккумуляторной батареи и живучести КА.

Поставленная цель достигается тем, что в известном способе эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата, заключающемся в циклировании двух или более аккумуляторных батарей в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания, ограничении степени заряда аккумуляторных батарей по уровню срабатывания сигнальных датчиков давления, размещенных в отдельных аккумуляторах каждой аккумуляторной батареи, контролировании параметров каждой аккумуляторной батареи, например текущей электрической емкости, напряжения, температуры, периодическом проведении формовочных циклов АБ путем глубокого их разряда, оценивании состояния АБ, один раз в 6-9 месяцев вводят запрет заряда для одной из АБ, в качестве разрядной нагрузки используют бортовую аппаратуру космического аппарата, критерием ограничения глубины разряда выбирают величину напряжения АБ, причем значение граничного уровня напряжения устанавливают равным числу n либо (n+1) аккумуляторов в аккумуляторной батарее, при достижении которого снимают запрет заряда АБ, включая тем самым ее в штатную работу, значения зарядной емкости срабатывания сигнального датчика давления и максимального напряжения АБ при заряде, определяемые в процессе завершения формовочного цикла, используют для оценки состояния аккумуляторной батареи и прогнозирования ее деградации, аналогичную последовательность операций повторяют для последующей АБ, при этом промежуток времени от завершения формовочного цикла одной АБ до начала формовочного цикла другой АБ выбирают исходя из температурного режима отформованной АБ.

На фиг.1 показаны идеализированные циклограммы изменения текущей емкости для формуемой АБ (1) и АБ, функционирующей штатно (2). Формуемая АБ циклично разряжается, достигая в конечном итоге состояния глубокого разряда; затем она заряжается в зависимости от освещенности солнечной батареи и потребляемой бортовой аппаратурой нагрузки. Функционирующая штатно АБ имеет периодически изменяющуюся циклограмму.

На фиг.2 показана упрощенная блок-схема работы СЭП, в том числе и в процессе проведения формовочного цикла АБ.

Система электропитания 1 состоит из аккумуляторных батарей 2, оснащенных сигнальными датчиками давления для отключения АБ от заряда, батареи фотоэлектрической (БФ) 3, комплекса автоматики и регулирования напряжения (КАС), включающего в себя разрядные устройства (РУ) 4, зарядные устройства (ЗУ) 5, стабилизатора напряжения и автоматики (СНА) 6. Бортовая аппаратура (БА) 7 может быть запитана от РУ 4 или СНА 6. В отдельных режимах работы СЭП РУ 4 и СНА 6 могут функционировать совместно на нагрузку, каковой является БА 7. Из бортового комплекса управления (БКУ) 8 можно при необходимости выдавать разовые команды (РК) для изменения режимов работы СЭП, в том числе такие РК, как «Запрет заряда АБ», «Снятие запрета заряда АБ». При штатной работе СЭП аккумуляторные батареи 2 заряжаются на световом участке орбиты КА, а на теневом участке АБ 2 питают БА 7 стабилизированным РУ 4 напряжением. Батарея фотоэлектрическая 3 на световом участке обеспечивает стабилизированным СНА 6 напряжением БА 7 и одновременно заряжает АБ 2. Номинальное напряжение на выходе СЭП составляет 28,5 В.

Так как существенная разбежка параметров аккумуляторов АБ 2 происходит через 6-9 месяцев, то периодичность проведения формовочных циклов выбирается один раз в 6-9 месяцев. При этом конкретный срок их проведения в пределах 6-9 месяцев может быть установлен исходя из других требований, например в период минимальных длительностей теневых участков орбиты КА и т.д.

Формовочные циклы проводят по очереди на одной из АБ 2 в произвольном порядке. За сутки до проведения формовочного цикла при штатной работе системы электропитания 1 осуществляют съем информации (на фиг.2 система телеметрического контроля КА не показана) о работе формуемой АБ (максимальное напряжение на заряде, минимальное напряжение при разряде, максимальную текущую емкость АБ при срабатывании датчика давления, максимальную температуру АБ).

Вводят запрет заряда АБ путем выдачи с Земли (через БКУ 8) РК «Запрет заряда АБ». В этом случае происходит разряд формуемой АБ на нагрузку (на бортовую аппаратуру 7) на теневых участках орбиты. Таким образом, запасенную в АБ энергию используют по прямому назначению. Разряд формуемой АБ происходит циклично (фиг.1), так как действие РК «Запрет заряда АБ» не снимается до достижения напряжения на АБ, равного n либо (n+1) В, где n - количество аккумуляторов в АБ. В этом случае происходит полное выравнивание характеристик аккумуляторов формуемой АБ. Так, для современных низкоорбитальных КА применяют никель-водородные АБ типа 28НВ-70, в которых количество аккумуляторов составляет 28 штук. На практике эти АБ разряжают при проведении формовочных циклов до 29 В.

После выполнения необходимого глубокого разряда запрет заряда АБ снимают путем выдачи РК «Снятие запрета заряда АБ» и формуемую АБ заряжают на фоне штатного функционирования СЭП на солнечных участках орбиты. Формовочный цикл считают завершенным, если формуемая АБ будет заряжена полностью до срабатывания сигнального датчика давления (на фиг.2 сигнальный датчик давления не показан).

Оценивают эффективность формовочного цикла путем сравнения характеристик АБ, полученных до и после проведения формовочных циклов. Формовочные циклы считают эффективными, если после их проведения значения максимального напряжения при заряде, минимального напряжения при разряде и текущей емкости, при которой происходит срабатывание датчика давления, увеличились при прочих равных условиях. Изменение указанных параметров в сторону их увеличения свидетельствует о выравнивании напряжений аккумуляторов и, как следствие, увеличении величины текущей емкости, при которой срабатывает сигнальный датчик давления. Снижение уровня срабатывания сигнального датчика давления по сравнению с аналогичным параметром предыдущего формовочного цикла указывает о деградации электродвижущей силы (ЭДС) отдельных аккумуляторов и АБ в целом.

Подобная методика оценки состояния АБ весьма эффективна и направлена на определение степени разбаланса аккумуляторов количественно. Своевременное определение степени разбаланса аккумуляторов и проведение очередного формовочного цикла АБ в целом позволяет надежно их эксплуатировать длительное время.

Повышение надежности эксплуатации никель-водородных аккумуляторных батарей также достигается за счет проведения формовочного цикла через каждые 6-9 месяцев и доведения глубины разряда до такого уровня, когда разрядное напряжение АБ станет равным n или (n+1) В. Кроме того, надежность эксплуатации АБ достигается путем обеспечения необходимой для стабилизации температурного режима отформованной АБ паузы между двумя формовочными циклами. Действительно, как показывает опыт эксплуатации АБ, после проведения ФЦ она подвержена повышенному нагреву, а следовательно, и повышенной деградации. При переходе к проведению ФЦ очередной АБ при прочих равных условиях удельная нагрузка (токовая) на остальные АБ увеличивается, и, как следствие, степень нагрева АБ, в том числе отформованной АБ, увеличивается. Температурный режим отформованной АБ практически стабилизируется, если продолжительность паузы между моментом завершения ФЦ данной АБ и до момента начала ФЦ очередной АБ составляет примерно 48-72 часов в зависимости от конкретных параметров отформованной АБ.

Живучесть системы электропитания и КА в целом увеличивается за счет использования бортовой аппаратуры в качестве нагрузки для формуемой АБ, поскольку только в этом случае формуемая АБ не выводится из состава системы электропитания и поддерживает заданный уровень надежности системы электропитания.

Таким образом, применение предлагаемого способа эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата позволит повысить надежность эксплуатации АБ в частности и живучесть КА в целом.

Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата, заключающийся в том, что две или более аккумуляторные батареи циклируют в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания, степень заряда аккумуляторных батарей ограничивают по уровню срабатывания сигнальных датчиков давления, размещенных в отдельных аккумуляторах каждой аккумуляторной батареи, контролируют параметры каждой аккумуляторной батареи, например текущую электрическую емкость, напряжение, температуру, периодически проводят формовочные циклы АБ путем глубокого их разряда, оценивают состояние АБ, отличающийся тем, что периодически, например один раз в 6-9 месяцев, вводят запрет заряда для одной из АБ, в качестве разрядной нагрузки используют бортовую аппаратуру космического аппарата, критерием ограничения глубины разряда выбирают величину напряжения АБ, причем значение граничного уровня напряжения устанавливают в вольтах равным числу n либо (n+1) аккумуляторов в аккумуляторной батарее, при достижении которого снимают запрет заряда АБ, включая тем самым ее в штатную работу, значения зарядной емкости срабатывания сигнального датчика давления и максимального напряжения АБ при заряде, определяемые в процессе завершения формовочного цикла, используют для оценки состояния аккумуляторной батареи и прогнозирования ее деградации, аналогичную последовательность операций повторяют для последующей АБ, при этом промежуток времени от завершения формовочного цикла одной АБ до начала формовочного цикла другой АБ выбирают исходя из температурного режима отформованной АБ.
Источник поступления информации: Роспатент

Показаны записи 21-27 из 27.
10.03.2015
№216.013.2ef3

Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Изобретение относится к электротехнической промышленности и может быть использовано при эксплуатации никель-водородных аккумуляторных батарей (АБ) в автономных системах электропитания (СЭП) космических аппаратов (КА), функционирующих на низкой околоземной орбите. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002543487
Дата охранного документа: 10.03.2015
01.03.2019
№219.016.cbd4

Устройство для отвода паров жидкого кислорода от бака окислителя бокового блока ракеты-носителя

Изобретение относится к наземному заправочному оборудованию ракет-носителей. Устройство содержит пароотводящий элемент, закрепленный одним концом на фланце бортового обтекателя (4) бокового блока ракеты. Этот элемент имеет два сильфона, жестко соединенных патрубком. Один из сильфонов выполнен...
Тип: Изобретение
Номер охранного документа: 0002389661
Дата охранного документа: 20.05.2010
01.03.2019
№219.016.d08f

Устройство металлизации подвижных элементов конструкции

Изобретение относится к устройству металлизации подвижных элементов конструкции и предназначено для защиты электрических приборов и кабельных сетей машин от влияния зарядов статического электричества, скапливающихся на подвижных элементах конструкции. В устройстве металлизации подвижных...
Тип: Изобретение
Номер охранного документа: 0002462005
Дата охранного документа: 20.09.2012
01.03.2019
№219.016.d0a2

Способ калибровки измерителей угловой скорости бесплатформенных инерциальных систем ориентации космических аппаратов и устройство его реализующее

Группа изобретений относится к области космической техники, а именно к способу калибровки измерителей угловой скорости бесплатформенных интегральных систем ориентации космических аппаратов и к устройству, которое его реализует. Способ калибровки заключается в выполнении трех последовательных...
Тип: Изобретение
Номер охранного документа: 0002466068
Дата охранного документа: 10.11.2012
11.03.2019
№219.016.ddab

Способ неразъемного соединения труб

Изобретение относится к области машиностроения и может быть использовано в неразъемных соединениях металлических законцовок труб и труб из композиционных материалов, например в трубопроводах и топливных баках ракеты-носителя. Способ неразъемного соединения труб включает операцию выполнения...
Тип: Изобретение
Номер охранного документа: 0002466324
Дата охранного документа: 10.11.2012
18.05.2019
№219.017.5861

Ракета космического назначения

Ракета космического назначения относится к космической технике и может использоваться как транспортное космическое средство для доставки полезного груза с поверхности Земли на орбиту. Ракета космического назначения содержит пакет ракетных блоков. Блоки содержат приборы систем управления, баки...
Тип: Изобретение
Номер охранного документа: 0002368542
Дата охранного документа: 27.09.2009
18.05.2019
№219.017.59d3

Компенсатор поперечных методических сдвигов изображения

Изобретение относится к оптико-электронной технике и может быть использовано в летательных аппаратах, предназначенных для съемки земной поверхности с целью картографирования. Компенсатор, установленный в фокальном узле объектива телескопа летательного аппарата, содержащий один или несколько...
Тип: Изобретение
Номер охранного документа: 0002454679
Дата охранного документа: 27.06.2012
Показаны записи 21-30 из 35.
03.11.2018
№218.016.9a34

Способ наземной эксплуатации системы электропитания космического аппарата

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования. Вначале на...
Тип: Изобретение
Номер охранного документа: 0002671600
Дата охранного документа: 02.11.2018
20.12.2018
№218.016.a97a

Байпасный переключатель литий-ионной аккумуляторной батареи для космического аппарата

Изобретение относится к электротехнике и касается байпасных переключателей в аккумуляторной батарее космического аппарата для парирования отказа аккумулятора путем организации обходной цепи в батарее. В байпасном переключателе литий-ионной аккумуляторной батареи для космического аппарата,...
Тип: Изобретение
Номер охранного документа: 0002675431
Дата охранного документа: 19.12.2018
21.12.2018
№218.016.aa16

Способ управления системой электропитания космического аппарата

Использование: в области электротехники. Технический результат - уменьшение вероятности возникновения аварийной ситуации из-за нарушения энергобаланса системы электропитания (СЭП). Способ управления системой электропитания космического аппарата (КА), содержащей фотоэлектрическую батарею (БФ) и...
Тип: Изобретение
Номер охранного документа: 0002675590
Дата охранного документа: 20.12.2018
21.12.2018
№218.016.aa22

Герметичный контейнер литий-ионной аккумуляторной батареи для космического аппарата

Изобретение относится к области электротехнике и касается герметичных контейнеров, в которые помещаются источники питания (батареи), для транспортирования, хранения и технического обслуживания батарей. Это особенно актуально для литий-ионной аккумуляторной батареи, так как из-за частоты...
Тип: Изобретение
Номер охранного документа: 0002675594
Дата охранного документа: 20.12.2018
20.02.2019
№219.016.beb6

Аккумуляторная батарея с автономной системой терморегулирования

Изобретение относится к электротехнике и касается аккумуляторных батарей (АБ) с автономной системой терморегулирования (СТР). Согласно изобретению, в АБ с автономной СТР, состоящей из аккумуляторов, установленных в отверстия цельнометаллического теплопроводного корпуса, и автономной системы...
Тип: Изобретение
Номер охранного документа: 0002394307
Дата охранного документа: 10.07.2010
23.03.2019
№219.016.ec7d

Способ управления системой электропитания космического аппарата

Использование: в области электротехники. Технический результат - повышение живучести и надежности функционирования автономной системы электропитания (СЭП) космических аппаратов (КА). Способ управления системой электропитания КА, содержащей включенные параллельно между собой аппаратуру...
Тип: Изобретение
Номер охранного документа: 0002682725
Дата охранного документа: 21.03.2019
29.03.2019
№219.016.f20e

Никель-водородная аккумуляторная батарея

Изобретение относится к электротехнике и касается никель-водородной аккумуляторной батареи (НВАБ), содержащей байпасные устройства (БУ), предназначенные для парирования отказа никель-водородных аккумуляторов. Согласно изобретению никель-водородная аккумуляторная батарея состоит из корпуса, в...
Тип: Изобретение
Номер охранного документа: 0002386196
Дата охранного документа: 10.04.2010
29.03.2019
№219.016.f644

Клапан герметичного аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано в герметичных аккумуляторах, для осуществления сброса давления газообразной среды из литий-ионных аккумуляторов. Технический результат заключается в повышении надежности обеспечения герметизации корпуса....
Тип: Изобретение
Номер охранного документа: 0002402838
Дата охранного документа: 27.10.2010
29.04.2019
№219.017.42b4

Никель-водородный аккумулятор

Изобретение относится к электротехнике и касается металл-газовых химических источников тока, в частности никель-водородных аккумуляторов (НВА). Технический результат изобретения заключается в повышении удельных массогабаритных характеристик, достижении ремонтопригодности, адаптируемости к...
Тип: Изобретение
Номер охранного документа: 0002306640
Дата охранного документа: 20.09.2007
29.04.2019
№219.017.42d0

Никель-водородная аккумуляторная батарея

Изобретение относится к электротехнике и касается никель-водородной аккумуляторной батареи (НВАБ). Согласно изобретению в НВАБ, состоящей из корпуса с установленными и электрически последовательно соединенными между собой никель-водородными аккумуляторами (НВА), электрообогревателей и...
Тип: Изобретение
Номер охранного документа: 0002368984
Дата охранного документа: 27.09.2009
+ добавить свой РИД