×
18.05.2019
219.017.55af

Результат интеллектуальной деятельности: ФЕМТОСЕКУНДНЫЙ ЛАЗЕРНЫЙ ДАЛЬНОМЕР

Вид РИД

Изобретение

№ охранного документа
02228517
Дата охранного документа
10.05.2004
Аннотация: Фемтосекундный лазерный дальномер содержит лазерный излучатель, приемный и передающий оптические каналы, оптическую регулируемую линию задержки с индикатором величины задержки, фотоприемник. Лазерный излучатель выполнен в виде источника одиночных фемтосекундных импульсов, излучение с которого поступает в рециркулятор, с выхода которого основная часть излучения поступает в передающий оптический канал, а другая часть - в оптическую регулируемую линию задержки, также дополнительно содержит сверхбыстродействующий переключатель, на вход которого поступают измерительные импульсы с приемного оптического канала и оптической регулируемой линии задержки, с выхода сверхбыстродействующего переключателя измерительные импульсы поступают в фотоприемник, выход которого соединен устройством управления оптической линией задержки. Технический результат - повышение инструментальной точности измерения дальности. 1 ил.

Предлагаемое устройство относится к лазерной дальнометрии и может быть использовано для измерения расстояний с точностью, близкой к точности измерения лазерным интерферометром, в частности, при проведении метрологических работ, для высокоточных геодезических измерений, измерений подвижек земной коры в местах ее естественных разломов и ряде других. По точности предлагаемый дальномер относится к оптическим интерферометрам для измерения расстояний до километра с инструментальной погрешностью несколько микрометров.

Известен импульсный светодальномер [1], который позволяет повысить точность измерения расстояний за счет учета влияния атмосферы, содержащий лазерный излучатель с нелинейным кристаллом, генерирующий импульсы пикосекундной длительности на двух длинах волн, фотоприемники, воспринимающие импульсы на двух длинах волн после прохождения измеряемого расстояния, две автоматически управляемые оптические линии задержки, одна для измерения линейного домера дальности, другая для определения разности хода лучей 1 и 2 гармоник оптического излучения при прохождении измеряемого расстояния, оптический затвор на основе ячейки Керра.

Известен импульсный лазерный светодальнометр, взятый в качестве прототипа [2], содержащий пикосекундный лазер с активной синхронизацией мод, генерирующий последовательность пикосекундных импульсов, посылаемых на дистанцию. Часть излучения лазера поступает в управляемую линию задержки опорного канала. Принятые с дистанции и опорные импульсы совмещаются в общий пучок и поступают на параметрический усилитель, позволяющий одновременно усиливать и осуществлять индикацию временного совпадения дистанционных и опорных импульсов.

Недостатком известных устройств является невысокая точность, соизмеримая с точностью современных фазовых светодальномеров, которая определяется быстродействием оптического затвора на основе ячейки Керра [3], со временем релаксации порядка 10-12 с и не позволяющая использовать фемтосекундные импульсы длительностью порядка 10-15 с.

Задачей изобретения является повышение инструментальной точности измерения дальности.

Поставленная задача достигается тем, что в фемтосекундном лазерном дальномере, содержащем лазерный излучатель, приемный и передающий оптические каналы, оптическую регулируемую линию задержки с индикатором величины задержки, фотоприемник, согласно изобретению лазерный излучатель выполнен в виде источника одиночных фемтосекундных импульсов, излучение с которого поступает в рециркулятор, с выхода которого основная часть излучения поступает в передающий оптический канал, а другая часть - в оптическую регулируемую линию задержки, также дополнительно содержит сверхбыстродействующий переключатель с временем переключения порядка 10-15 с [4, 5], на вход которого поступают измерительные импульсы с приемного оптического канала и оптической регулируемой линии задержки, с выхода сверхбыстродействующего переключателя измерительные импульсы поступают в фотоприемник, выход которого соединен с устройством управления оптической линией задержки. Устройство позволяет точнее фиксировать момент совпадения опорных оптических импульсов и импульсов, пришедших с дистанции.

В известном уровне техники не обнаружено аналогичных технических решений, предназначенных для увеличения точности измерения дальности и содержащих фемтосекундный излучатель, рециркулятор, сверхбыстродействующий оптический переключатель (МПДМП-структуры).

На чертеже изображена схема фемтосекундного дальномера, где 1 - источник одиночных фемтосекундных импульсов; 8 - рециркулятор с оптическим квантовым усилителем 2 и поглотителем оптического излучения 3, 7; 5 - оптическая линия задержки с устройством управления 4 и индикации 16; 6 - система сервоуправления; 9 - светоделительная призма; 10 - фотоприемник; 11 - свето делитель; 12 - сверхбыстродействующий оптический переключатель; 13 и 14 - приемный и передающий оптические каналы, 15 - отражатель.

Фемтосекундный светодальномер работает следующим образом. Фемтосекундный лазер одиночного импульса 1 (ФЛОИ) излучает импульс с мощностью Ф~1010 Вт и длительностью несколько фемтосекунд. Для создания периодической последовательности мощных лазерных импульсов с частотой f около 150 МГц и стабильностью следования импульсов до 10-8 с излучение ФЛОИ поступает в рециркулятор 8 [6]. В ней одиночный импульс, проходя каждый раз в кольцевом резонаторе с оптическим квантовым усилителем 2, выводится полупрозрачным зеркалом на дистанцию с относительной стабильностью порядка. Небольшая часть излучения поступает в оптическую регулируемую линию задержки опорного канала. Основная часть периодической последовательности лазерного излучения с помощью передающего оптического канала 14 направляется на удаленный отражатель 15. Измерительные импульсы с приемного оптического канала 13 и опорные с оптической линии задержки 5 поступают в сверхбыстродействующий оптический переключатель 12. В случае совпадения опорных и измерительных импульсов опорный импульс, поглощаемый в полупроводнике, воздействует на структуру со стороны электрода, прилегающего к р-n-переходу, и вызывает переброс электрического поля, поворачивающего плоскость поляризации принимаемого излучения. Далее с выхода переключателя измерительные импульсы с помощью светоделительной призмы 9 направляются в фотоприемник 10, который останавливает систему сервоуправления 6 устройством управления 4, микрометрической подвижки ОЛЗ, сопряженного с устройством индикации 16. Отсчет по индикатору датчика перемещений соответствует величине L. Цифрами 3, 7 обозначены поглотители оптического излучения. Сущность работы светодальномера заключается в фиксации временного совпадения опорных и измерительных импульсов, прошедших двойное измеряемое расстояние D, в сверхбыстродействующем коммутаторе по отсчетам в автоматически регулируемой оптической линии задержки (ОЛЗ) в опорном канале. Это дает возможность определять расстояние по формуле

где V - скорость распространения ЭМВ в атмосфере;

Т - период следования импульсов;

λ/2 - половина длины волны, соответствующей периоду T (для f=150 МГц λ/2=1 м);

N - целое число периодов, укладываемых по времени в расстоянии 2D;

τ - домер временного интервала (0<τ<Т), соответствующего периоду Т;

L - точно измеряемый домер, выражающий величину τ в линейной мере.

Определение числа N, соответствующего целому числу метров в определяемом расстоянии, можно выполнить любым другим методом, включая использование фазовых или импульсных дальномеров.

Для учета влияния атмосферы в предлагаемом дальномере может быть использован дисперсионный метод, реализованный в приборе [2].

Современная промышленность и ряд областей науки и техники нуждаются в таких приборах, поскольку они позволяют существенно повысить точность измерения при выполнении следующих работ: монтаж промышленного оборудования, синхрофазатронов и ускорителей, создание прецизионных геодезических сетей, исследование движений земной коры, в станках для точной обработки крупногабаритных деталей и т.д.

Источники информации

1. Авторское свидетельство СССР № 1045713, кл. G 01 С 3/08.

2. Кошелев А.В. Высокоточный лазерный импульсный дальномер. - В кн.: 2 Всесоюзная научно-техническая конференция. Применение лазеров в приборостроении. МВТУ им. Н.Э. Баумана, М., 1979, с.89 и 90.

3. Сверхкороткие световые импульсы. Под редакцией С. Шапиро, М.: Мир, 1981, с.131.

4. Kaiser W. Von kurzen zu ultra kurzen Laser impulsen. // Phis. B1. - 1994. - 50. № 7.-8, - s.661-664.

5. Скляров О. Фотонные сети. Радио № 7, 1996, с.24.

6. Измерительная техника, 1997, № 8, c.38.

Фемтосекундныйлазерныйдальномер,содержащийлазерныйизлучатель,приемныйипередающийоптическиеканалы,оптическуюрегулируемуюлиниюзадержкисиндикаторомвеличинызадержки,фотоприемник,отличающийсятем,чтолазерныйизлучательвыполненввидеисточникаодиночныхфемтосекундныхимпульсов,излучениескоторогопоступаетврециркулятор,свыходакоторогоосновнаячастьизлученияпоступаетвпередающийоптическийканал,адругаячасть-воптическуюрегулируемуюлиниюзадержки,такжедополнительносодержитсверхбыстродействующийпереключатель,навходкоторогопоступаютизмерительныеимпульсысприемногооптическогоканалаиоптическойрегулируемойлиниизадержки,свыходасверхбыстродействующегопереключателяизмерительныеимпульсыпоступаютвфотоприемник,выходкоторогосоединенустройствомуправленияоптическойлиниейзадержки.
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
11.03.2019
№219.016.d799

Способ интерференционного измерения формы поверхности оптических деталей

Способ интерференционного измерения формы поверхности оптических деталей включает регистрацию интерференционной картины фотографическим путем на прозрачном носителе, освещение зарегистрированной интерферограммы в интервале углов от β до α+β, где α - угол диффузного рассеивания света...
Тип: Изобретение
Номер охранного документа: 02224982
Дата охранного документа: 27.02.2004
17.04.2019
№219.017.1582

Определитель полярных координат огневых средств, обнаруживающих себя блеском выстрела

Определитель полярных координат огневых средств, обнаруживающих себя блеском выстрела, содержит двухканальную систему, матричные двухкоординатные фотоприемники, блок электронной обработки сигналов, блок цифровой индикации результатов измерений и блок электропитания. В едином корпусе закреплены...
Тип: Изобретение
Номер охранного документа: 0002252442
Дата охранного документа: 20.05.2005
17.04.2019
№219.017.160c

Линзовый объектив с изменяемым фокусным расстоянием для работы в ик-области спектра (варианты)

Объектив может быть использован в приборах, работающих в ИК-диапазоне для задач обнаружения, различения и опознавания объектов. Объектив содержит установленные по ходу лучей первый и последний неподвижные положительные компоненты и подвижные одиночные линзы, расположенные между ними. Первый...
Тип: Изобретение
Номер охранного документа: 0002339983
Дата охранного документа: 27.11.2008
09.05.2019
№219.017.4bac

Линзовый объектив

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в качестве объектива в приборах ночного видения для наблюдения и опознавания объектов в условиях пониженной освещенности. Объектив содержит три компонента. Первый компонент состоит из двух линз...
Тип: Изобретение
Номер охранного документа: 02239855
Дата охранного документа: 10.11.2004
18.05.2019
№219.017.5586

Оптическая система светодальномера

Изобретение относится к геодезическому приборостроению и может быть использовано как дополнительная оптическая система к светодальномеру. Оптическая система светодальномера содержит уголковый отражатель, систему отражающих элементов, установленных последовательно один за другим отражающими...
Тип: Изобретение
Номер охранного документа: 02224983
Дата охранного документа: 27.02.2004
29.06.2019
№219.017.9bb7

Пирометр истинной температуры

Изобретение относится к устройствам пирометрии и может быть использовано для дистанционного измерения истинной температуры различных объектов с неизвестным коэффициентом излучения. Пирометр содержит объектив, диск обтюратора, который включает N спектральных фильтров, приемник излучения,...
Тип: Изобретение
Номер охранного документа: 02219504
Дата охранного документа: 20.12.2003
Показаны записи 1-2 из 2.
29.03.2019
№219.016.ef6a

Способ исследования скважин

Изобретение относится к горному делу и может быть использовано при газлифтной эксплуатации скважин, оборудованных установками плунжерного лифта. Техническим результатом является оптимизация эксплуатации скважины. Для этого способ включает остановку скважины, сообщение трубного и затрубного...
Тип: Изобретение
Номер охранного документа: 0002244105
Дата охранного документа: 10.01.2005
18.05.2019
№219.017.5586

Оптическая система светодальномера

Изобретение относится к геодезическому приборостроению и может быть использовано как дополнительная оптическая система к светодальномеру. Оптическая система светодальномера содержит уголковый отражатель, систему отражающих элементов, установленных последовательно один за другим отражающими...
Тип: Изобретение
Номер охранного документа: 02224983
Дата охранного документа: 27.02.2004
+ добавить свой РИД