×
18.05.2019
219.017.554b

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ ОБЪЕМНОГО РАЗРЯДА В ИМПУЛЬСНО-ПЕРИОДИЧЕСКОМ ГАЗОВОМ ЛАЗЕРЕ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к квантовой электронике, в частности к импульсно-периодическим лазерам с поперечным разрядом, в том числе замкнутого цикла. Предложен способ формирования объемного разряда в импульсно-периодическом газовом лазере замкнутого цикла, включающий подачу импульса высокого напряжения на лезвийные электроды, прокачку рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора. А также гашение акустических колебаний в газовой смеси, распространяющихся вверх и вниз по потоку газовой смеси и параллельно оси оптического резонатора лазера. При этом в межлезвийных пространствах электродов до полного затухания подавляют акустические волны, распространяющиеся в направлении разрядного тока. Устройство включает генератор импульсного напряжения, рабочую камеру, боковые стенки которой наклонены к оси оптического резонатора и навстречу друг другу, лезвийные электроды, систему прокачки рабочей газовой смеси, сетки, установленные по потоку газа до и после рабочей камеры. при этом лезвия электродов с прямоугольной или треугольной или трапециевидной формой в сечении установлены с наклоном к направлению разрядного тока. Технический результат: увеличение предельной частоты следования лазерных импульсов, увеличение средней выходной мощности лазера, улучшение диаграммы направленности излучения. 2 н.п. ф-лы, 2 ил.

Область техники.

Изобретение относится к квантовой электронике, в частности к импульсно-периодическим газовым лазерам с поперечным разрядом, в том числе замкнутого цикла, и может быть использовано при разработке импульсно-периодических газовых лазеров, применяемых в технологических операциях, медицине и экологии.

Уровень техники.

Каждый высоковольтный импульс инициирования рабочей газовой смеси сопровождается возникновением тепловой газовой “пробки” в разрядном промежутке лазера, при расширении которой появляются ударные и акустические волны, приводящие к флуктуации плотности и показателя преломления газовой смеси. С ростом частоты повторения импульсов инициирования влияние ударных и акустических волн приводит к разрядной неустойчивости, и для конкретной разрядной системы лазера существуют предельные частота повторения импульсов инициирования и энергия генерации в отдельном импульсе, тем самым, ограничивается средняя мощность и снижается технический КПД лазера. Подавление акустических колебаний в газовой смеси за время между импульсами и облегчение условий формирования объемного разряда позволит достигнуть предельных частот повторения импульсов, увеличить среднюю мощность лазера и улучшить направленность излучения.

Известен способ формирования объемного самостоятельного разряда в импульсно-периодическом СО2-лазере, включающий подачу импульсного электрического напряжения на электроды рабочей камеры и прокачку рабочей газовой смеси через область разряда в направлении, перпендикулярном току электрического разряда [1].

Устройство для реализации этого способа [1] представляет собой импульсно-периодический лазер замкнутого цикла, выполненный в виде рабочей камеры с резонатором, генератором импульсного напряжения и с системой, обеспечивающей прокачку газов через область разряда.

Недостатком данного способа формирования объемного разряда и устройства для его реализации является то, что в момент каждого разряда в рабочей газовой среде лазера возникают ударные волны и сопровождающие их акустические колебания, которые вызывают флуктуации плотности и показателя преломления газовой смеси, ведущие к неустойчивости формирования разряда и ухудшению направленности излучения.

Известен способ формирования объемного разряда в импульсно-периодическом лазере [2], в котором по сравнению со способом [1] осуществляют ослабление акустических колебаний по потоку газовой смеси и вдоль оси оптического резонатора.

Этот способ формирования разряда реализован в устройстве, описанном в работе [2], в котором по сравнению с устройством [1] в рабочую камеру введены участки стенок, хорошо поглощающие акустические колебания, распространяющиеся параллельно оси оптического резонатора.

Недостатком данного способа формирования объемного разряда и устройства для его реализации является подавление акустических колебаний лишь в двух направлениях их распространения - вверх и вниз по потоку газовой смеси и параллельно оси оптического резонатора лазера.

Наиболее близким по технической сущности к заявляемому решению и выбранным в качестве прототипа является способ формирования объемного разряда и устройство для его реализации, предложенные в работе [3].

Способ формирования объемного разряда [3] включает подачу импульса высокого напряжения на электроды рабочей камеры, прокачку рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора, а также гашение акустических колебаний, распространяющихся вверх и вниз по потоку рабочей смеси и вдоль оси оптического резонатора.

Устройство для формирования объемного разряда [3] включает генератор импульсного напряжения, рабочую камеру с лезвийными электродами, систему, обеспечивающую прокачку рабочей газовой смеси через область разряда, сетки, установленные по потоку газовой смеси до и после разрядного промежутка, и боковые стенки камеры, наклоненные к оси оптического резонатора навстречу друг другу под углом ~ 30°.

Благодаря этому удалось частично устранить влияние акустических колебаний на однородность разряда и улучшить условия его формирования.

Недостатком прототипа является наличие ударных волн и акустических колебаний, вызванных импульсно-периодическим инициированием газовой смеси и распространяющихся в направлении разрядного тока от электрода к электроду.

Задачей изобретения является создание способа формирования объемного разряда и устройства для его реализации, обеспечивающих подавление акустических колебаний, сопровождающих импульсно-периодическое инициирование рабочей газовой смеси и распространяющихся из разрядного промежутка во всех направлениях.

Техническим результатом в заявленном способе и устройстве является повышение предельной частоты следования импульсов генерации, увеличение средней выходной мощности лазера и улучшение диаграммы направленности излучения.

Технический результат в заявляемом способе достигается тем, что в способе формирования объемного разряда в импульсно-периодическом газовом лазере, включающем подачу импульса высокого напряжения на лезвийные электроды, прокачку рабочей газовой смеси через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора, гашение акустических колебаний вверх и вниз по потоку газовой смеси и параллельно оси оптического резонатора, новым является то, что дополнительно в межлезвийных пространствах электродов до полного затухания подавляют акустические волны, распространяющиеся в направлении разрядного тока от электрода к электроду.

Технический результат в заявляемом устройстве достигается тем, что в устройстве для формирования объемного разряда в импульсно-периодическом газовом лазере, включающем генератор импульсного напряжения, рабочую камеру, боковые стенки которой наклонены к оси оптического резонатора и навстречу друг другу, лезвийные электроды, систему, обеспечивающую прокачку рабочей газовой смеси через область разряда, сетки, установленные по потоку газовой смеси до и после разрядного промежутка, новым является то, что лезвия электродов с прямоугольной или треугольной или трапециевидной формой в сечении установлены с наклоном к направлению разрядного тока, при этом угол наклона ϕ и характерные размеры лезвий - средняя толщина лезвия а, шаг расположения лезвий b и высота лезвий h связаны соотношением

arctg((b-a)/h)ϕ<30°.

Для лезвий любой формы в сечении его размеры и угол наклона ϕ определяются из условия того, чтобы акустические волны не выходили из межэлектродных пространств электродов без нескольких отражений. В тоже время наклон лезвий не должен быть слишком большим, чтобы не приводить к заметному нарушению однородности электрического поля в большей части разрядного промежутка. Максимальное значение ϕ определяется соответствующими электростатическими расчетами и уточняется экспериментально. При этом суммарный объем межлезвийных пространств должен быть достаточен для расширения в нем тепловой газовой “пробки”. Экспериментально найдено, что он должен быть 40-50% от объема активного межэлектродного пространства, в котором локализуется объемный разряд.

В зависимости от конкретного назначения устройства и размеров активного объема разрядного промежутка лезвия могут крепиться к металлической пластине или составлять с ней одно целое или крепиться к изоляционной пластине в случае раздельной подачи высоковольтных импульсов на них.

Полное затухание акустических колебаний во всех направлениях в предлагаемом способе обеспечивается гашением колебаний, распространяющихся вверх и вниз по потоку рабочей газовой смеси, гашением колебаний, параллельных оси оптического резонатора, и гашением в межлезвийных пространствах электродов колебаний, распространяющихся в направлении разрядного тока от электрода к электроду. При этом гашение акустических колебаний в межлезвийных пространствах электродов осуществляется посредством их многократных отражений от поверхностей лезвий.

Подавление до полного затухания акустических колебаний, распространяющихся из активного объема во всех направлениях при импульсно-периодическом инициировании рабочей среды, позволяет повысить предельную частоту следования импульсов, увеличить среднюю выходную мощность лазера и улучшить диаграмму направленности излучения.

На фиг.1 схематично представлено устройство для реализации заявляемого способа формирования объемного разряда в импульсно-периодическом газовом лазере. Устройство содержит рабочую камеру 1, зеркала резонатора 2, боковые стенки 3, наклоненные под углом ~ 30° к зеркалам, и лезвия 4, закрепленные на пластинах 5. Генератор импульсного напряжения и сетки на фиг.1 не показаны.

На фиг.2 в разрезе показан один из вариантов электрода, иллюстрирующий подавление акустических волн в межлезвийных пространствах электрода, здесь а, b и h - толщина, шаг расположения и высота лезвий а ϕ - угол наклона лезвий к направлению

разрядного тока.

Заявляемый способ осуществляют следующим образом.

На лезвийные электроды рабочей камеры подают импульсы высокого напряжения, рабочую газовую смесь прокачивают через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси резонатора, гасят до полного затухания акустические колебания в рабочей камере, распространяющиеся во всех направлениях - вверх и вниз по потоку рабочей смеси, параллельно оси оптического резонатора лазера а также распространяющиеся в направлении разрядного тока.

Устройство для реализации способа работает следующим образом. Импульсы высокого напряжения подают на лезвийные электроды 4, закрепленные на пластинах 5 рабочей камеры 1, рабочую газовую смесь прокачивают через область объемного разряда в направлении, перпендикулярном току электрического разряда и оси оптического резонатора из зеркал 2, гасят до полного затухания акустические колебания, распространяющиеся во всех направлениях. Гашение акустических колебаний, распространяющихся вверх и вниз по потоку рабочей среды, осуществляют с помощью сеток. Гашение колебаний, параллельных оси резонатора, осуществляют посредством заклоненных боковых стенок 3. Гашение акустических колебаний, распространяющихся в направлении разрядного тока, осуществляют в межлезвийном пространстве электродов за счет многократного отражения волн между поверхностями лезвий 4.

Проведено экспериментальное подтверждение работоспособности предлагаемого способа и устройства с лезвийными электродами различной формы. Показано, что полное подавление акустических волн, влияющих на однородность плотности рабочей газовой смеси в активном объеме межэлектродного пространства и, соответственно, на устойчивость горения разряда и практическое постоянство показателя преломления в активном объеме в момент инициирования газовой смеси, приводит к увеличению частоты повторения импульсов генерации без снижения энергии в каждом и, как следствие, к повышению средней мощности лазера, а также к улучшению диаграммы направленности излучения.

Изобретение найдет применение при разработке лазеров, используемых как в исследовательских целях, так и в технологических операциях, медицине и экологии.

Источники информации

1. В.Ю.Баранов, Д.Д.Малюта, В.С.Межевов. Квантовая электроника, 5, №10, 2168-2195, 1978.

2. В.Ю.Баранов, Д.Д.Малюта, В.С.Межевов, А.П.Напартович. Физика плазмы, 6, в.4, 785, 1980.

3. И.Л.Буцыкин, С.Д.Великанов, П.А.Евдокимов, А.Ф.Запольский, Е.В.Ковалев, Б.Е.Кодола, И.Н.Пегоев. Квантовая электроника, 31, №11, 957-961, 2001.

4. Stappaerts E.A. Appl. Phys. Letts, 40, 1018 (1982).

1.Способформированияобъемногоразрядавимпульсно-периодическомгазовомлазере,включающийподачуимпульсавысокогонапряженияналезвийныеэлектроды,прокачкурабочейгазовойсмесичерезобластьобъемногоразрядавнаправлении,перпендикулярномтокуэлектрическогоразрядаиосиоптическогорезонатора,гашениеакустическихколебаний,распространяющихсявверхивнизпопотокугазовойсмесиипараллельноосиоптическогорезонаторалазера,отличающийсятем,чтодополнительновмежлезвийныхпространствахэлектродовдополногозатуханияподавляютакустическиеволны,распространяющиесявнаправленииразрядноготока.12.Устройстводляформированияобъемногоразрядавимпульсно-периодическомгазовомлазерезамкнутогоцикла,включающеегенераторимпульсногонапряжения,рабочуюкамеру,боковыестенкикоторойнаклоненыкосиоптическогорезонатораинавстречудругдругу,лезвийныеэлектроды,системудляпрокачкирабочейгазовойсмеси,сетки,установленныепопотокугазовойсмесидоипослерабочейкамеры,отличающеесятем,чтолезвияэлектродовспрямоугольной,илитреугольной,илитрапециевиднойформойвсеченииустановленыснаклономкнаправлениюразрядноготока,приэтомуголнаклонаϕихарактерныеразмерылезвий-средняятолщиналезвияа,шаграсположениялезвийbивысоталезвийhсвязанысоотношениемarctg((b-а)/h)≤ϕ<30°.2
Источник поступления информации: Роспатент

Показаны записи 21-30 из 45.
18.05.2019
№219.017.54a0

Способ получения синглетного кислорода и устройство для его реализации

Изобретение относится к лазерной технике, преимущественно к химическим лазерам, и может быть использовано в технологическом кислород-йодном лазере (КИЛ). Способ получения синглетного кислорода включает подачу щелочного раствора перекиси водорода и газообразного хлора в химический реактор, вывод...
Тип: Изобретение
Номер охранного документа: 02240281
Дата охранного документа: 20.11.2004
18.05.2019
№219.017.557c

Способ испытания материалов на разрыв в условиях сложно-напряженного динамического нагружения

Изобретение относится к области испытания материалов на разрыв. Способ испытания материала на разрыв в условиях сложно-напряженного динамического нагружения заключается в воздействии на образец испытываемого материала ударной волной, создаваемой контактным взрывом заряда ВВ, размещенного в виде...
Тип: Изобретение
Номер охранного документа: 02221233
Дата охранного документа: 10.01.2004
18.05.2019
№219.017.5585

Способ компактирования порошкового материала

Изобретение относится к способам компактирования порошковых материалов, к получению монолитных и прочных объектов путем воздействия динамического импульса на порошковые материалы. В предложенном способе, включающем взрывное сжатие порошкового материала, помещенного в контейнер, скользящей...
Тип: Изобретение
Номер охранного документа: 02224621
Дата охранного документа: 27.02.2004
18.05.2019
№219.017.55a0

Способ определения характеристик сорбции газов материалами

Способ применим в области исследования физических и химических свойств материалов и может быть использован для определения одновременно коэффициента растворимости и начальной концентрации газов материалами. Сущность изобретения: образец материала, содержащий растворенный газ, растворимость и...
Тип: Изобретение
Номер охранного документа: 02226267
Дата охранного документа: 27.03.2004
18.05.2019
№219.017.5c09

Способ регистрации механической величины и регистратор для осуществления способа

Изобретение относится к неразрушающему контролю объектов. Согласно способу измеряют величину в частотном диапазоне от f до fпосредством первичного преобразователя, сигнал с которого преобразуют в цифровой вид с частотой дискретизации f и подают в оперативное запоминающее устройство. При этом...
Тип: Изобретение
Номер охранного документа: 02189565
Дата охранного документа: 20.09.2002
18.05.2019
№219.017.5c12

Источник питания нелинейной нагрузки

Изобретение относится к электротехнике, к преобразовательной технике и может быть использовано в источниках питания с импульсной формой выходного напряжения, работающих на нелинейную нагрузку: излучатели газовых лазеров, плазмохимические реакторы и т.п. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 02199814
Дата охранного документа: 27.02.2003
29.05.2019
№219.017.6aa6

Инерционный включатель

Изобретение предназначено для измерения действующих линейных ускорений в системах автоматики летательных аппаратов и систем безопасности автомобилей. Инерционный включатель содержит корпус, установленное на оси инерционное тело, удерживаемое магнитной системой, контакты и поворотный привод...
Тип: Изобретение
Номер охранного документа: 02193800
Дата охранного документа: 27.11.2002
09.06.2019
№219.017.7fe8

Запорный клапан

Запорный клапан предназначен для перекрытия потока газа в выходной канал при импульсной подаче давления во входной канал. Запорный клапан содержит корпус с проточной частью. Корпус имеет входной и выходной каналы. Запорный клапан также снабжен седлом в форме усеченного конуса, к поверхности...
Тип: Изобретение
Номер охранного документа: 02179679
Дата охранного документа: 20.02.2002
09.06.2019
№219.017.8006

Способ обращения с теплоносителями и техническими растворами ядерных энергетических установок научных центров

Изобретение относится к технологии переработки жидких радиоактивных отходов (ЖРО) методами концентрирования, сорбционной доочистки и цементирования. Технический результат: уменьшение объема захораниваемых отвержденных отходов, повышение их водостойкости и снижение зарастания рабочих...
Тип: Изобретение
Номер охранного документа: 02168221
Дата охранного документа: 27.05.2001
09.06.2019
№219.017.802a

Кумулятивный заряд и способ его изготовления

Область применения: взрывные работы и различные отрасли промышленности, использующие взрывные технологии, например в прострелочно-взрывной аппаратуре при взрывных работах в нефтегазодобывающей промышленности. Сущность изобретения: в корпусе размещен заряд взрывчатого вещества (ВВ), между...
Тип: Изобретение
Номер охранного документа: 02187778
Дата охранного документа: 20.08.2002
+ добавить свой РИД