×
17.05.2019
219.017.5332

Результат интеллектуальной деятельности: Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Вид РИД

Изобретение

№ охранного документа
0002687710
Дата охранного документа
15.05.2019
Аннотация: Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин. Техническим результатом является упрощение процедуры измерения плотности бурового раствора. В устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, измерительный участок трубы длиной в несколько полуволн выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин.

Известно устройство для одновременного определения параметров бурового раствора (см. RU 2085726 С1, 27.07.1997), осуществляющее определение параметров непосредственно в процессе бурения нефтяных и газовых скважин и содержащее установленные на измерительном трубопроводе, соединенные с желобом датчик температуры, гамма-датчик плотности, электромагнитный расходомер. На желобе перед измерительным трубопроводом установлен дополнительный датчик уровня. Выходы всех датчиков соединены с входами коммутатора, выход которого соединен с входом микроЭВМ. При этом датчик уровня выполнен нейтронным и состоит из биологической защиты, источника нейтронов и детекторов, между которыми расположен слой из поглощающего медленные нейтроны материала. В данном устройстве посредством нейтронного датчика уровня, измеряющего уровень бурового раствора в желобе и электромагнитного расходомера, гаммаплотномера, а также датчика температуры, измеряющих соответственно расход, плотность и температуру бурового раствора в измерительном трубопроводе, после корреляционной обработки данных об указанных параметрах раствора в желобе и измерительном трубопроводе, получают реальные значения контролируемых параметров бурового раствора.

Недостатком этого известного устройства является низкая точность измерения объемного и массового расходов раствора из-за расхождения по истинным площадям поперечного сечения раствора в желобе и в измерительном трубопроводе, а также конструктивная сложность.

Наиболее близким техническим решением к предлагаемому является принятое автором за прототип устройство для контроля плотности и компонентного состава бурового раствора в трубопроводе (см. патент на полезную модель №34015 С1, 20.11.2003). Данное устройство включат в себя первый и второй источники гамма-излучения, первый, второй и третий детекторы гамма-излучения, измерительный участок трубопровода, первый, второй и третий измерители средней частоты импульсов, первую, вторую и третью схемы формирования и выделения импульсов, вычислительный блок, индикаторный блок, первую и вторую схемы сравнения сигналов, первую и вторую схемы НЕ, триггер адреса рабочего детектора, схему И управления электропитанием второго детектора. Принцип работы этого устройства заключается в использовании взаимодействия гамма-излучения с буровым раствором и предусматривает вычисление плотности раствора посредством определения в вычислительном блоке объемных концентраций компонентов раствора с учетом плотности жидкости и минеральных плотностей компонентов твердой фазы.

К недостатку этого известного технического решения можно отнести сложность процедуры вычисления плотности бурового раствора.

Техническим результатом данного устройства является упрощение процедуры измерения плотности бурового раствора.

Технический результат достигается тем, что в устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, измерительный участок трубы длиной в несколько полуволн, выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что вычисление расстояния между узлом и пучностью стоячей электромагнитной волны в диэлектрическом измерительном отрезке трубы с буровым раствором, дает возможность измерить плотность бурового раствора в легкосплавленной бурильной трубе.

Наличие в заявляемом способе совокупности перечисленных существующих признаков, позволяет решить задачу измерения плотности бурового раствора в легкосплавленной бурильной трубе на основе вычисления расстояния между узлом и пучностью электромагнитной волны в диэлектрическом измерительном отрезке трубы с буровым раствором с желаемым техническим результатом, т.е. упрощением процедуры измерения плотности бурового раствора.

На чертеже представлена функциональная схема предлагаемого устройства.

Устройство содержит источник излучения 1, соединенный выходом с элементом ввода сигнала 2, измерительный участок трубы 3, металлический штырь 4, детектор 5 и индикатор 6.

Устройство работает следующим образом. Отрезок измерительного участка трубы 3, снабженный на торцах металлическими штырями (по одному штырю на каждом торце), и легкосплавленную бурильную трубу, по которой транспортируется буровой раствор, последовательно соединяют с помощью специальных фланцев, расположенных на торцах выше указанных труб. После этого при протекании бурового раствора через отрезок диэлектрического отрезка измерительного участка трубы, направляют на поверхность этой трубы электромагнитную волну посредством элемента ввода сигнала 2, принимаемого электромагнитную волну с выхода источника излучения 1. Волна, пройдя через диэлектрическую поверхность данного отрезка, далее распространяется по трубе и взаимодействует с буровым раствором, протекающим по ней. В рассматриваемом случае отрезок трубы можно представить как круглый волновод длиной в несколько полуволн (например, 5), заполненный веществом.

Из теорий распространения электромагнитных волн по волноводам известно что, в последних могут существовать множества типов колебаний волн. При определенных геометрических размерах (диаметре) отрезка трубы (волновода), можно возбудить в трубе один тип волны, например, магнитную волну Ни. В данном случае выбор радиуса измерительного участка трубы, обеспечивающего существование в ней определенного типа волны, целесообразно произвести с учетом радиуса легкосплавленной бурильной трубы. При этом для того чтобы возбужденная в отрезке измерительного участка трубы волна, не распространялась за пределами данной трубы (область отсечки), радиус этого отрезка трубы следует выбирать меньшим чем радиус легкосплавленной бурильной трубы (ЛБТ). В итоге последовательное механическое соединение двух таких труб с разными диаметрами, обеспечит в измерительном отрезке трубы режим критической длины волны (частоты), исключающий распространение волны за пределами измерительного отрезка. В диапазоне 2,62<λ<3,41R, где λ - длина волны, R - радиус измерительного участка трубы, по нему может распространяться только один тип волны. Кроме того, распространение до торцов ЛБТ возбужденной в измерительном участке волны и наличие на торцах измерительного участка трубы металлических штырей, закрепленных на стенках измерительного отрезка, в этом случае, приведет к образованию режима стоячей волны в отрезке измерительного участка трубы с буровым раствором.

Стоячая волна, как правило, характеризуется узлами и пучностями амплитуды напряженности, например, электрического поля. В силу этого в данном техническом решении длина измерительного участка трубы (волновода) может составить несколько полуволн (λ/2) и по ее наружной поверхности перемещают одним концом небольшой металлический штырь 4, реагирующий (съем) на изменение амплитуды электрического поля стоячей волны в волноводе со средой (буровым раствором). Другой конец металлического штыря, подключенный электрически к входу детектора 5, используется для передачи сигнала.

При взаимодействии стоячей волны с буровым раствором в волноводе для показателя преломления n данной среды можно записать

где ε - диэлектрическая проницаемость бурового раствора, μ - магнитная проницаемость борового раствора. С учетом приведенного выражения длину электромагнитной волны в данном случае можно выразить как

λв0/n

где λ0 - длина волны в вакууме (воздухе), λв - длина стоячей волны в волноводе со средой. В рассматриваемом случае принимается μ=1. Тогда для волны в контролируемой среде получаем

С дугой стороны для длины стоячей волны λв можно записать

где l - расстояние между соседними узлами (или пучностями) стоячей волны в волноводе с буровым раствором. Совместное преобразование выражений (1) и (2) позволяет принимать

Последнее выражение показывает, что при постоянном значении Хо, определением расстояния между соседними пучностями стоячей волны, можно вычислить диэлектрическую проницаемость бурового раствора в измерительном участке трубы, т.е. в ЛБТ. Однако ввиду того, что между соседними пучностями имеет место узел стоячей волны, зависимость 8 от 1 может иметь неоднозначный характер. Поэтому для исключения неоднозначной зависимости между этими параметрами, в предлагаемом устройстве предлагается измерить расстояние, например, между узлом и пучностью. Для этого металлический штырь перемещают по наружной поверхности отрезка измерительной трубы до тех пор, пока, выходной сигнал детектора не станет минимальным, т.е. фиксируют узел амплитуды стоячей волны. После этого дальнейшее перемещение штыря приведет к максимальному значению амплитуды стоячей волны (выходной сигнал детектора), соответствующему пучности амплитуды стоячей волны. Следовательно, измерение расстояния между узлом и пучностью стоячей волны при его изменении выходным сигналом детектора, даст возможность получить информацию (однозначную) диэлектрической проницаемости бурового раствора. В силу этого если обозначить расстояние между узлом и пучностью стоячей волны то формула (3) примет вид

В рассматриваемом случае зависимость между искомой величиной - плотностью бурового раствора и его диэлектрической проницаемостью можно выразить формулой Клаузиуса-Мосотти

(ε-1)M/(ε+2)ρ=4πNaα,

где М - молекулярный вес, ρ - плотность, Na - число Авогадро, α - поляризуемость. Из последнего выражения для ε получаем

где A=4πNaα.

Совместное решение выражений (4) и (5) позволяет записать для плотности ρ бурового раствора

В итоге, при постоянных значениях параметров М, А и λ0, измерением расстояния между узлом и пучностью стоячей волны в отрезке трубы с буровым раствором, можно вычислить плотность контролируемой среды. В данном устройстве выходной сигнал детектора, соответствующий изменению расстоянию , т.е. плотности раствора, далее поступает на вход индикатора 6, где отражается информация о плотности бурового раствора в ЛБТ.

Таким образом, в предлагаемом техническом решении определение расстояния между узлом и пучностью стоячей волны в измерительном участке трубы дает возможность упростит процедуру измерения плотности бурового раствора в легкосплавленной бурильной трубе.

Предлагаемое устройство, помимо его применения непосредственно в процессе бурения нефтяных и газовых скважин, может быть использовано и для решения других задач, например, в криогенной технике для контроля физических параметров (плотности, расхода) жидких криогенных продуктов.

Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе, содержащее источник излучения, детектор, измерительный участок трубы и индикатор, отличающееся тем, что в него введены элемент ввода сигнала в измерительный участок трубы, металлический штырь, перемещающийся по поверхности измерительного участка трубы, при этом измерительный участок трубы длиной в несколько полуволн выполнен из диэлектрического материала и соединен последовательно торцами с легкосплавленной бурильной трубой, причем выход источника излучения соединен с элементом ввода сигнала в измерительный участок трубы, выход металлического штыря подключен к входу детектора, выход которого соединен с входом индикатора.
Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе
Источник поступления информации: Роспатент

Показаны записи 261-270 из 276.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
20.04.2023
№223.018.4b66

Способ экспериментальных исследований аэромеханики и динамики полёта беспилотных летательных аппаратов и устройство для его осуществления

Изобретение относится к области авиационной испытательной техники, в частности к методам и средствам исследования аэромеханики и динамики полета беспилотных летательных аппаратов. При реализации способа экспериментально исследуют характеристики беспилотного летательного аппарата при заданном...
Тип: Изобретение
Номер охранного документа: 0002767584
Дата охранного документа: 17.03.2022
20.04.2023
№223.018.4bb6

Беспилотный летательный аппарат

Изобретение относится к малогабаритным авиационным системам с дистанционно пилотируемыми летательными аппаратами. Беспилотный летательный аппарат содержит крестовину с закрепленным в ее центре корпусом с боковыми стенками и крышкой, на которой установлена аккумуляторная батарея. На концах лучей...
Тип: Изобретение
Номер охранного документа: 0002760832
Дата охранного документа: 30.11.2021
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
Показаны записи 11-14 из 14.
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
16.05.2023
№223.018.5dad

Устройство для определения концентрации выхлопных газов в газоходе дизельных автомобилей и очистки от газов

Изобретение относится к очистке отработавших газов дизельных двигателей внутреннего сгорания и регенерации сажевых фильтров. Предложенное устройство содержит сажевый фильтр, первый СВЧ-генератор, второй СВЧ-генератор, усилитель и компаратор. При этом в него введены первый элемент ввода...
Тип: Изобретение
Номер охранного документа: 0002757745
Дата охранного документа: 21.10.2021
03.06.2023
№223.018.76af

Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу

Изобретение относится к области приборостроения, в частности к способам измерения расхода потоков веществ. Способ измерения массового расхода газообразного вещества, протекающего по трубопроводу, заключается в том, что поток контролируемой среды нагревают микроволновым излучением. Сначала...
Тип: Изобретение
Номер охранного документа: 0002748325
Дата охранного документа: 24.05.2021
05.06.2023
№223.018.7730

Устройство для молниеотвода от привязного коптера

Изобретение относится к средствам защиты объектов различного назначения при прямом или близком воздействии молниевых разрядов, электромагнитных импульсов (ЭМИ), коротких замыканий и коммутаций энергооборудования, в частности к средствам молниезащиты, беспилотных летательных аппаратов....
Тип: Изобретение
Номер охранного документа: 0002767515
Дата охранного документа: 17.03.2022
+ добавить свой РИД