×
17.05.2019
219.017.52bc

Результат интеллектуальной деятельности: Тонкопленочный градиентометр

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники, более конкретно – к устройствам для измерения градиентов слабых магнитных полей. Раскрыт тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности. При этом чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности. Изобретение обеспечивает снижение величины шумов градиентометра и расширение рабочей полосы частот. 2 ил.

Изобретение относится к области измерительной техники, а более конкретно - к устройствам измерения градиентов слабых магнитных полей.

Известен класс приборов [Афанасьев, Ю.В. Средства измерений параметров магнитного поля / Ю.В. Афанасьев, Н.В. Студенцов, В.Н. Хорев, Е.Н. Чечурина, А.П. Щелкин. - Л.: Энергия. Ленингр. отд-ние, 1979. - 320 с., ил.], предназначенных для измерения градиента магнитного поля. Такие приборы находят широкое применение в магниторазведочных работах, каротажных исследованиях, магнитной дефектоскопии, при поиске массивных ферромагнитных объектов, в исследованиях магнитных полей биологических объектов и т.д. Чувствительная схема однокомпонентного градиентометра обычно состоит из двух включенных дифференциально измерительных преобразователей магнитной индукции, разнесенных на некоторое расстояние, называемой базой. В такой схеме построения градиентометра собственные шумы магнитометров являются некоррелированными, в результате чего происходит суммирование этих шумов на вычитающем элементе градиентометра.

Известна конструкция градиентометра, охваченного общей обратной связью [Патент США №6339328, МПК G01R 33/02, опубл. 01.15.2002], состоящего, по крайней мере, из двух датчиков магнитного поля (магнитометров), при этом как минимум у двух магнитометров направления максимальной чувствительности ориентированы соосно. В качестве датчиков магнитного поля могут быть использованы СКВИД-магнитометры, датчики Холла, феррозондовые магнитометры или магниторезистивные магнитометры. Магнитометр также включает вычислительный блок, на основе которого в цифровом виде реализованы алгоритмы адаптивной балансировки выходных сигналов магнитометров. В предпочтительном варианте исполнения градиентометр может содержать как минимум восемь магнитометров в трехмерном варианте компоновки и набор из трех пар общих ортогональных колец Гельмгольца, включенных в цепь обратной связи, по одной паре колец на каждое направление х, у, z, таким образом, что пять независимых компонент градиента магнитного поля могут быть измерены. Градиентометр также может использоваться для измерения компонентов градиента магнитного поля второго и более высокого порядка.

Известна конструкция градиентометра, имеющего в составе дополнительный магнитометр, предназначенный для реализации схемы вычитания постоянной составляющей магнитного поля из других магнитометров [Патент США №5122744, МПК G01R 33/035, опубл. 16.06.1992]. Такой градиентометр имеет, по крайней мере, три векторных (трехкомпонентных) СКВИД-магнитометра. Градиентометр включает опорный магнитометр и множество измерительных магнитометров, причем сигнал опорного магнитометра предназначен для компенсации постоянной составляющей магнитного поля, осуществляемой цепью обратной связи с компенсационными катушками. Подобным образом могут быть построены и схемы измерения градиентов более высокого порядка.

Недостатком известных конструкций является отсутствие возможности обеспечить одновременно высокую чувствительность градиентометра и широкую полосу частот с помощью предлагаемых магнитных датчиков. Как известно, при использовании в качестве чувствительных элементов градиентометра высокочувствительных СКВИД-магнитометров или феррозондовых магнитометров возможно достижение высокой чувствительности устройства только в ограниченном диапазоне частот - как правило, с верхней граничной частотой не более 10 кГц. Кроме того, известным недостатком СКВИД-магнитометров является необходимость их охлаждения до криогенных температур, что значительно затрудняет их практическое использование. Широкая полоса частот реализуется при использовании в качестве чувствительных элементов градиентометра датчиков Холла или магниторезистивных магнитометров, однако такие устройства обладают низкой чувствительностью.

Известна конструкция трехкомпонентного градиентометра, работающего при комнатной температуре [Koch, R.Н. Room temperature three sensor magnetic field gradiometer / R.H. Koch, G.A. Keefe, G. Allen // Review of Scientific Instruments, - 1996. - Vol. 67. - №1. - P. 230-235 (прототип)]. Устройство содержит трехкомпонентные феррозондовые магнитометры, не требующие охлаждения до криогенных температур. Для каждого из направлений измерений в конструкции предусмотрен опорный феррозондовый магнитометр, измеряющий магнитной поле. Выходной сигнал опорного магнитометра усиливается, буферизируется и прикладывается через переменные резисторы к двум компенсационным катушкам, внутри каждой из которых расположен измерительный феррозондовый магнитометр. Величины сопротивлений резисторов подбираются таким образом, чтобы при нахождении конструкции в однородном поле оба измерительных градиентометра находились в нулевом магнитном поле. Разница между выходными сигналами измерительных магнитометров, деленная на расстояние между ними (базу градиентометра), есть градиент магнитного поля в данном направлении. Описанный градиентометр взят за прототип заявленного изобретения.

Недостатком прототипа является его относительно низкая чувствительность, обусловленная высоким уровнем шумов используемых в его конструкции феррозондовых магнитометров. Кроме того, феррозондовые магнитометры имеют узкую полосу рабочих частот, как правило верхняя граничная частота которых не более 10 кГц.

Техническим результатом заявленного технического решения является снижение величины шумов градиентометра и расширение рабочей полосы частот.

Технический результат достигается тем, что в тонкопленочном градиентометре, для измерения градиентов слабых магнитных полей, включающем два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, новым является то, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается использованием высокочувствительных магнитометров на основе резонаторов с тонкими магнитными пленками, причем существенным отличием является использование для двух магнитометров градиентометра одного общего генератора СВЧ-накачки.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Заявляемое изобретение представляет собой совокупность известных элементов, выбор которых и связь между которыми осуществлены на основании известных правил, но совместное использование этих элементов в такой функциональности не следует явным образом из известного уровня техники и способствует снижению величины шумов градиентометра и расширению рабочей полосы частот.

На основании вышеизложенного, заявляемое техническое решение соответствует критерию патентоспособности «изобретательский уровень».

Данное изобретение поясняется чертежами: на фиг. 1 показана печатная плата градиентометра с установленными электронными компонентами; на фиг. 2 показана конструкция градиентометра.

На многослойной печатной плате (1) тонкопленочного градиентометра (фиг. 1) размещен генератор (2) СВЧ-накачки, выход которого подключен к усилителю (3) мощности. Выход усилителя (3) мощности подключен параллельно к конденсаторам (4) и полосковым линиям (5) двух датчиков градиентометра. Тонкие магнитные пленки (ТМП) (6) размещены под полосковыми линиями (5) таким образом, чтобы высокочастотное магнитное поле было направлено строго вдоль оси трудного намагничивания ТМП. Величины емкостей конденсаторов (4) и индуктивностей полосков (5) выбраны таким образом, чтобы резонансные частоты образованных ими колебательных контуров находились в области частот 600-800 МГц (для ТМП состава Ni80Fe20). Входы амплитудных детекторов (7) подключены к колебательным контурам, образованным конденсаторами (4) и полосковыми линиями (5). Выходы амплитудных детекторов (7) подключены последовательно к операционным усилителям (размещены на нижней стороне печатной платы (1)) и компенсационным катушкам (8). Выходные сигналы операционных усилителей являются выходными сигналами магнитометров. Выходы магнитометров подключены к вычитающему элементу градиентометра (размещен на нижней стороне печатной платы (1)). Постоянное поле смещения в ТМП (6) формируется магнитными системами (9), состоящими из постоянных магнитов и направлено под небольшим углом к осям трудного намагничивания ТМП. Печатная плата (1), компенсационные катушки (8) и магнитные системы (9) размещены на основании (10). Выходной сигнал вычитающего элемента является выходным сигналом градиентометра.

Устройство работает следующим образом. Рассмотрим работу одного датчика градиентометра. Сигнал с размещенного на печатной плате (1) общего для двух датчиков генератора (2) СВЧ-накачки поступает на общий усилитель (3) мощности, а затем на конденсатор (4) и полосковую линию (5), формирующую магнитное поле в ТМП (6). Высокочастотное магнитное поле, создаваемое полосковой линией (5), направлено вдоль оси трудного намагничивания ТМП (6) и возбуждает ферромагнитный резонанс (ФМР). Условия возбуждения ФМР определяются величиной и направлением поля смещения. Так как поле смещения ориентировано под небольшим углом к оси трудного намагничивания ТМП (6), а внешнее измеряемое поле направлено вдоль оси легкого намагничивания ТМП (6), изменение величины измеряемого поля приводит к изменению параметров ФМР, что в свою очередь приводит к изменению потерь, вносимых ТМП (6) в колебательный контур, образованный конденсатором (4) и полосковой линией (5). Изменение потерь в контуре регистрируется амплитудным детектором (7). Повышение долговременной стабильности коэффициента преобразования датчика достигается путем использования компенсационного метода измерения, для этого выходной сигнал магнитометра подается на катушку (8) обратной связи. Постоянное поле смещения формируется магнитной системой (9). Аналогично работает второй датчик градиентометра. Общая для двух датчиков печатная плата (1), компенсационные катушки (8) и магнитные системы (9) объединены основанием (10). Сигналы двух магнитометров поступают на вычитающий элемент градиентометра, выходной сигнал которого передается потребителю. Основным источником шумов датчиков слабых магнитных полей на основе микрополосковых резонаторов с тонкими магнитными пленками является генератор СВЧ-накачки [Бабицкий, А. Магнитометр слабых квазистационарных и высокочастотных полей на резонансных микрополосковых преобразователях с тонкими магнитными пленками / А.Н. Бабицкий, Б.А. Беляев, Н.М. Боев, Г.В. Скоморохов, А.В. Изотов, Р.Г. Галеев // Приборы и техника эксперимента, - 2016. - №3. - С. 96-104.].

Экспериментальные исследования тонкопленочного градиентометра показали, что применение одного генератора СВЧ-накачки для двух чувствительных элементов градиентометра позволяет вычитать шумы отдельных датчиков на вычитающем элементе градиентометра, что снижает итоговый уровень шума. Использование в градиентометре датчиков слабых магнитных полей на основе тонких магнитных пленок позволило существенно расширить частотный диапазон устройства, на практике разработаны конструкции на частоты до 105 Гц.

Тонкопленочный градиентометр, для измерения градиентов слабых магнитных полей, включающий два чувствительных элемента, разнесенных в пространстве и имеющих сонаправленные оси максимальной чувствительности, отличающийся тем, что чувствительные элементы выполнены на основе резонаторов с тонкими магнитными пленками, каждый чувствительный элемент имеет отдельную компенсационную схему измерений и отдельную систему формирования магнитного поля смещения, а СВЧ-сигнал накачки резонаторов чувствительных элементов формируется одним общим СВЧ-генератором с усилителем мощности.
Тонкопленочный градиентометр
Тонкопленочный градиентометр
Источник поступления информации: Роспатент

Показаны записи 11-20 из 55.
13.02.2018
№218.016.2263

Способ приготовления металлических наночастиц железа

Изобретение относится к приготовлению металлических наночастиц железа из водного золя на основе наночастиц ферригидрита и может быть использовано в медицине. Водный золь на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из...
Тип: Изобретение
Номер охранного документа: 0002642220
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.315b

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния. Держатель образца для СКВИД-магнитометра типа MPMS содержит...
Тип: Изобретение
Номер охранного документа: 0002645031
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.33c2

Емкостный дилатометр для работы в составе установки ppms qd

Изобретение относится к измерительной технике, предназначенной для измерения малых деформаций, в частности к емкостным дилатометрам, и может быть использовано для определения коэффициента линейного температурного расширения, пьезоэлектрического эффекта и магнитострикции. Емкостный дилатометр...
Тип: Изобретение
Номер охранного документа: 0002645823
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3b75

Спин-стекольный магнитный материал с содержанием иттербия

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти....
Тип: Изобретение
Номер охранного документа: 0002647544
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4789

Способ квалификации металлокомпозитных баков высокого давления

Использование: для неразрушающего контроля металлокомпозитных баков высокого давления по акустико-эмиссионным сигналам. Сущность изобретения заключается в том, что в процессе нагружения баков путем постепенного увеличения внутреннего давления измеряют параметры акустико-эмиссионных сигналов, по...
Тип: Изобретение
Номер охранного документа: 0002650822
Дата охранного документа: 17.04.2018
01.07.2018
№218.016.69a9

Миниатюрный полосковый фильтр

Изобретение относится к радиотехнике, в частности к микрополосковым фильтрам. Фильтр содержит подвешенную между экранами диэлектрическую подложку, на одну сторону которой нанесены короткозамкнутые на экран с одного края подложки полосковые проводники резонаторов, а на вторую сторону подложки...
Тип: Изобретение
Номер охранного документа: 0002659321
Дата охранного документа: 29.06.2018
06.07.2018
№218.016.6d42

Способ выявления и картирования структуры почвенного профиля методом съемки в инфракрасном диапазоне спектра

Изобретение относится к почвоведению. Способ выявления и картирования структуры почвенного профиля методом съемки в инфракрасном диапазоне спектра заключается в съемке почвенного профиля радиометром в инфракрасном диапазоне. Границы почвенных горизонтов определяют по перепаду значений...
Тип: Изобретение
Номер охранного документа: 0002660224
Дата охранного документа: 05.07.2018
10.07.2018
№218.016.6f3e

Способ бесконтактного измерения температуры in situ

Изобретение относится к измерительной технике, а именно к технике измерения физической температуры объекта по температурным изменениям его оптических постоянных, и может быть использовано для дистанционного измерения температуры объекта в промышленности, медицине, биологии, в физических...
Тип: Изобретение
Номер охранного документа: 0002660765
Дата охранного документа: 09.07.2018
13.07.2018
№218.016.70ee

Способ создания прозрачных проводящих композитных нанопокрытий (варианты)

Изобретение относится к способу создания прозрачных проводящих композитных нанопокрытий (варианты). По первому варианту предварительно осуществляют химическое осаждение на нагретую подложку тонкой пленки углеродных нанотрубок. Осуществляют реактивное магнетронное распыление металлической...
Тип: Изобретение
Номер охранного документа: 0002661166
Дата охранного документа: 12.07.2018
02.08.2018
№218.016.776f

Пьезоэлектрический обратимый преобразователь для создания изгибной деформации

Изобретение относится к пьезоэлектрическим устройствам для обратимого преобразования механического напряжения в электрическое. Технический результат заключается в упрощении конструкции преобразователя и увеличении его эффективности при нано или микроразмерах преобразователя. Технический...
Тип: Изобретение
Номер охранного документа: 0002662950
Дата охранного документа: 31.07.2018
Показаны записи 11-20 из 73.
10.04.2015
№216.013.401a

Оптический многослойный полосно-пропускающий фильтр

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит полуволновые слои диэлектрика, являющиеся резонаторами, и прилегающие к ним многослойные диэлектрические зеркала, разделяющие один резонатор от другого и от окружающего...
Тип: Изобретение
Номер охранного документа: 0002547898
Дата охранного документа: 10.04.2015
10.06.2015
№216.013.507e

Оптический многослойный полосно-пропускающий фильтр

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит диэлектрическую подложку с нанесенными на нее тонкопленочными слоями диэлектриков с чередующимися высоким показателем преломления n и низким показателем преломления n....
Тип: Изобретение
Номер охранного документа: 0002552127
Дата охранного документа: 10.06.2015
10.09.2015
№216.013.783c

Микрополосковый двухполосный полосно-пропускающий фильтр

Изобретение относится к микрополосковому двухполосному полосно-пропускающему фильтру, предназначенному для частотной селекции сигналов на двух несущих частотах и используемому в технике сверхвысоких частот в селективных трактах приемных и передающих систем. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002562369
Дата охранного документа: 10.09.2015
20.03.2016
№216.014.cbce

Полосковый резонатор

Изобретение предназначено для формирования задающих цепей генераторов, устройств частотной селекции и др. Техническим результатом изобретения является увеличение отношения первых двух резонансных частот полоскового резонатора при сохранении высокой добротности и миниатюрности и позволяет...
Тип: Изобретение
Номер охранного документа: 0002577485
Дата охранного документа: 20.03.2016
10.02.2016
№216.014.e94d

Пленочная магнитная структура для электрически управляемых устройств свч

Изобретение относится к технике сверхвысоких частот и предназначено для использования в качестве активного элемента в таких устройствах волноводного тракта, как управляемые магнитным полем полосовые фильтры, фазовращатели и амплитудные модуляторы. Технический результат состоит в повышении...
Тип: Изобретение
Номер охранного документа: 0002575123
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2bc5

Многослойный полосно-пропускающий фильтр

Многослойный полосно-пропускающий фильтр, относящийся к микроволновой и оптической технике, содержит параллельные слои диэлектрика резонансной толщины, каждый из которых отделен один от другого и от окружающего пространства прилегающими зеркалами. При этом каждое его зеркало выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002579816
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.415e

Широкополосный полосно-пропускающий фильтр

Изобретение относится к СВЧ электронике, в частности к частотно-селективным фильтрам. Широкополосный полосно-пропускающий фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую сторону нанесен полосковый проводник, частично расщепленный с...
Тип: Изобретение
Номер охранного документа: 0002584342
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5e37

Полосковый фильтр гармоник

Изобретение предназначено для использования в селективных трактах радиоаппаратуры различного назначения. Фильтр содержит диэлектрическую подложку, на одну сторону которой нанесены полосковые проводники, закороченные с одного конца, и на вторую сторону также нанесены полосковые проводники,...
Тип: Изобретение
Номер охранного документа: 0002590313
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.a42e

Микрополосковый полосно-пропускающий фильтр

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Микрополосковый полосно-пропускающий фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую - нанесены...
Тип: Изобретение
Номер охранного документа: 0002607303
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.c82a

Многослойный полосно-пропускающий фильтр

Многослойный полосно-пропускающий фильтр содержит параллельные слои диэлектрика резонансной толщины, каждый из которых отделен один от другого и от окружающего пространства плоской решеткой параллельных тонкопленочных полосковых проводников с упорядоченными осями. При этом оси любых двух...
Тип: Изобретение
Номер охранного документа: 0002619137
Дата охранного документа: 12.05.2017
+ добавить свой РИД