×
16.05.2019
219.017.528e

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕННЫ НАВИГАЦИОННОГО СПУТНИКА

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации, а именно к способам определения характеристик излучения антенн, и может быть использовано в составе аппаратно-программных комплексов и устройств для определения пространственной амплитудной диаграммы направленности передающих антенн навигационных спутников. Технический результат заключается в создании способа определения пространственной амплитудной диаграммы направленности передающих антенн навигационных спутников, позволяющего учесть систематическую погрешность, возникающую из-за неколлинеарности соответствующих осей эллипсов поляризации передающей антенны спутника и приемной наземной антенны. Технический результат достигается за счет того, что в способе определения диаграммы направленности антенны, характеризующемся проведением измерений мощности сигнала, излучаемого с выхода передающей антенны навигационного спутника в процессе его нахождения на орбите и принимаемого на входе наземной приемной антенны с высоким коэффициентом усиления таким образом, что проведение каждой отдельно взятой серии измерений мощности сигнала осуществляется только в пределах интервалов времени непрерывной видимости навигационного спутника; преобразованием полученных данных в форму, пригодную для цифровой обработки, последующей нормировкой данных и цифровой обработкой данных; формированием фрагментов диаграммы направленности антенны на основе результатов цифровой обработки данных, учитывающих искажения диаграммы направленности антенны; определением диаграммы направленности антенны на основе совокупности сформированных фрагментов диаграммы направленности антенны, проводятся дополнительные измерения мощности сигнала в период проведения упреждающего разворота навигационного спутника относительно первой оси, ориентированной на Землю, при этом фрагменты диаграммы направленности антенны на основе результатов цифровой обработки данных, позволяющих учесть искажения диаграммы направленности антенны, формируются с учетом поправок, вычисленных на основе полученных данных дополнительных измерений мощности сигнала в период проведения упреждающего разворота навигационного спутника. 1 ил.

Изобретение относится к радиолокации, а именно к способам определения характеристик излучения антенн, и может быть использовано в составе аппаратно-программных комплексов и устройств для определения пространственной амплитудной диаграммы направленности передающих антенн навигационных спутников

Известны способы определения амплитудной диаграммы направленности антенны навигационного спутника, основанные на измерении характеристик антенн в дальней зоне (например, методом вышки или облетным методом), в ближней зоне, или основанные на измерении параметров антенн по шумовому радиоизлучению (см., напр. монографию Методы измерения характеристик антенн СВЧ / Л.Н. Захарьев, А.А. Леманский, В.И. Турчин и др.; под ред. Н.М. Цейтлина. - М.: Радио и связь, 1985. - 368 с). Эти способы позволяют определить диаграмму направленности антенны только в процессе предполетной (предстартовой) подготовки навигационного спутника к работе и не позволяют определять диаграмму направленности антенны навигационного спутника, находящегося на орбите.

Известны способы на основе применения корреляционно-фазовых пеленгаторов, позволяющие осуществлять орбитально-частотный мониторинг космических аппаратов, включающий контроль параметров орбит и параметров излучаемых сигналов и реализуемые с помощью аппаратно-программного обеспечения наземных измерительных сетей наземных комплексов управления, состоящих из одной или более контрольно-измерительных станций и нескольких удаленных пассивных приемных станций (см., напр. монографию Чеботарев А.С., Жуков А.О., Махненко Ю.Ю., Турлов З.Н. Мониторинг космических аппаратов на основе применения корреляционно-фазовых пеленгаторов. - М.: Физматлит, 2011. - 120 с.). Использование этих способов для определения диаграммы направленности антенны требует задействования значительных вычислительных ресурсов и может приводить к частично некорректному определению искажений диаграммы направленности антенны.

Наиболее близким по технической сущности является способ определения диаграммы направленности антенны, описанный в статье Thoelert S., Meurer М., Erker S. In-Orbit Analysis of Antenna Pattern Anomalies of GNSS Satellites // Navigation. - V. 59 (2012), №2. - P. 135-144, doi.org/10.1002/navi.11, и характеризующийся проведением нескольких серий измерений мощности сигнала, излучаемого антенной навигационного спутника в процессе его нахождения на орбите и принимаемого наземной антенной с высоким коэффициентом усиления, преобразованием полученных данных в форму, пригодную для цифровой обработки, последующей нормировкой данных и цифровой обработкой данных, формированием фрагментов диаграммы направленности антенны на основе результатов цифровой обработки данных с выявлением искажений диаграммы направленности с последующим определением диаграммы направленности антенны на основе сформированных фрагментов данных. Несмотря на то, что для реализации способа достаточно одной штатной наземной антенны с высоким коэффициентом усиления и не требуется специализированного аппаратного обеспечения, в способе не учитывается систематическая погрешность определения пространственной амплитудной диаграммы направленности антенны из-за неколлинеарности эллипсов поляризации передающей антенны спутника и приемной наземной антенны. Проведение каждой отдельно взятой серии измерений мощности сигнала осуществляется только в пределах интервалов времени непрерывной видимости навигационного спутника, что позволяет учитывать искажения фрагментов диаграммы направленности антенны только в случае непрерывно и монотонно изменяющегося движения спутника на орбите в пределах интервалов времени непрерывной видимости при условии накопления достаточного количества данных и не позволяет учесть влияние искажений, вызванных резким изменением характера движения спутника при прохождении особых участков орбиты.

Технический результат заключается в создании способа определения пространственной амплитудной диаграммы направленности передающих антенн навигационных спутников, позволяющего учесть систематическую погрешность, возникающую из-за неколлинеарности соответствующих осей эллипсов поляризации передающей антенны спутника и приемной наземной антенны.

Технический результат достигается за счет того, что в способе определения диаграммы направленности антенны, характеризующемся проведением измерений мощности сигнала, излучаемого с выхода передающей антенны навигационного спутника в процессе его нахождения на орбите и принимаемого на входе наземной приемной антенны с высоким коэффициентом усиления таким образом, что проведение каждой отдельно взятой серии измерений мощности сигнала осуществляется только в пределах интервалов времени непрерывной видимости навигационного спутника; преобразованием полученных данных в форму, пригодную для цифровой обработки, последующей нормировкой данных и цифровой обработкой данных; формированием фрагментов диаграммы направленности антенны на основе результатов цифровой обработки данных, учитывающих искажения диаграммы направленности антенны; определением диаграммы направленности антенны на основе совокупности сформированных фрагментов диаграммы направленности антенны, проводятся дополнительные измерения мощности сигнала в период проведения упреждающего разворота навигационного спутника относительно первой оси ориентированной на Землю, при этом фрагменты диаграммы направленности антенны на основе результатов цифровой обработки данных, позволяющих учесть искажения диаграммы направленности антенны, формируются с учетом поправок, вычисленных на основе полученных данных дополнительных измерений мощности сигнала в период проведения упреждающего разворота навигационного спутника.

В отличие от способа, принятого за прототип, вычисленные значения размаха искажений измеренной мощности сигнала в период проведения упреждающего разворота навигационного спутника позволяют оценить коэффициент эллиптичности антенны спутника и, как следствие, оценить систематическую погрешность из-за поляризационных потерь, вызванных неколлинеарностью соответствующих осей эллипсов поляризации, тогда как в способе, принятом в качестве прототипа, искажения мощности в период проведения упреждающего разворота навигационного спутника практически не учитываются (наблюдения могут вообще не содержать интервалы разворотов) или статистически оказывают крайне слабое влияние (развороты занимают примерно 0,08% по времени от общего времени полета спутника).

Штатное функционирование навигационного спутника подразумевает солнечно-земную схему ориентации (см., напр. монографию Чеботарев В.Е. Основы проектирования космических аппаратов информационного обеспечения: учеб. пособие / В.Е. Чеботарев, В.Е. Косенко; Сиб. гос. аэрокосмич. ун-т. - Красноярск, 2011. - 488 с.). Схема включает ориентацию первой оси спутника вместе с антенной на Землю (по радиус-вектору орбиты) и ориентацию панелей солнечных батарей на Солнце разворотом спутника вместе с панелями солнечных батарей относительно первой оси спутника до совмещения нормали к панелям солнечных батарей с плоскостью Солнце - объект (спутник) - Земля и разворотом панелей солнечных батарей вокруг второй оси вращения, перпендикулярной первой, до совмещения нормали к панелям солнечных батарей с направлением на Солнце.

Положение линии визирования навигационного спутника неподвижным наземным наблюдателем в связанной с антенной спутника системе координат задается двумя углами - азимутом А и надирным углом N. За один интервал времени непрерывной видимости навигационного спутника над линией горизонта (от восхода до захода) линия визирования образует фрагмент поверхности, пересекающей поверхность диаграммы направленности антенны спутника по отрезку пространственной кривой.

Упреждающий разворот навигационного спутника осуществляется в интервалы времени, соответствующие неопределенности ориентации на орбите, обусловленной наличием теневых орбит, когда тень от Земли пересекает орбиту спутника в зоне малых (≈ 0 градусов) значений угла Солнце - объект (спутник) - Земля (СОЗ), а также возникновением в зоне малых и больших (≈ 180 градусов) значений угла СОЗ высоких угловых скоростей слежения вокруг первой оси спутника, превышающих возможности исполнительных органов (см., напр. статью Фатеев А.В., Емельянов Д.В., Тентилов Ю.А., Овчинников А.В. Прохождение особых участков орбиты навигационным космическим аппаратом системы ГЛОНАСС // Вестник СибГАУ. 2014. №4(56). С. 126-131).

Угол U, на который производится упреждающий разворот вокруг первой оси спутника, зависит от высоты Солнца над плоскостью орбиты спутника Н: например, при Н=0, U=180 градусов; при H=0,5 градусов, U=163,5 градусов. Зависимость угла упреждающего разворота U от высоты Солнца над орбитой навигационного спутника Н можно найти, например в описании к патенту RU 2569999 С1 МПК B64G 1/24, B64G 1/44, опубл. 10.12.2015 Бюл. №34.

На фиг. 1 представлено положение потребителя, навигационного спутника и Солнца при упреждающем развороте в проекции на поверхность Земли при Н=0. Панели солнечных батарей обозначены как 1 и 2.

Способ осуществляется следующим образом:

В процессе полета навигационного спутника в течение каждого отдельно взятого интервала видимости навигационного спутника над горизонтом наземной антенной осуществляется регистрация сигнала, излучаемого антенной навигационного спутника с преобразованием полученных данных в форму, пригодную для цифровой обработки, нормировкой по дальности оцифрованного сигнала мощностью P(A,N), дБВт и последующей цифровой обработкой оцифрованного сигнала мощностью P(A,N), дБВт, приведенного к некоторой постоянной дальности R, что позволяет получить отрезок криволинейного сечения пространственной диаграммы направленности антенны спутника. Накопление данных об уровне сигнала навигационного спутника, полученных в разные интервалы видимости над горизонтом позволяет получить набор отрезков криволинейных сечений, с использованием которых строится модель фрагмента диаграммы направленности антенны навигационного спутника. Размер фрагмента и точность модели определяется параметрами орбиты спутника и общим периодом наблюдения навигационного спутника (количеством интервалов видимости над горизонтом).

В процессе осуществления регистрации сигналов, излучаемых антенной навигационного спутника, приемная наземная антенна в связанной с ней системе координат имеет постоянное угловое положение полуосей эллипса поляризации. В этой же системе координат угловое положение полуосей эллипса поляризации антенны навигационного спутника с солнечно-земной схемой ориентации меняется во времени. Известно, что меняющееся угловое рассогласование соответствующих полуосей эллипсов поляризаций антенн приводит к изменению нормированного коэффициента передачи энергии между двумя антеннами (см., напр. монографию Спутниковая связь и вещание: Справочник. - 3-е изд., перераб. и доп. / В.А. Бартенев, Г.В. Болотов, В.Л. Быков и др.; Под ред. Л.Я. Кантора. - М.: Радио и связь, 1997. - 528 с.), при этом нормированный коэффициент передачи энергии будет определяться по следующей формуле:

где e1 и e2 - коэффициенты эллиптичности (отношение малой полуоси эллипса к большой) поляризации передающей и приемной антенн соответственно; W - угол между соответствующими полуосями эллипсов поляризации передающей и приемной антенн, 0≤W<180 градусов.

Т.к. на практике e1 и e2 имеют постоянные значения (e1=const, e2=const) за весь период времени наблюдения спутника для цели определения диаграммы направленности его антенны, то из выражения (1) можно получить следующую функциональную зависимость:

K(W)=C+Dcos2W, где

Обозначим потери мощности сигнала из-за неколлинеарности соответствующих полуосей эллипсов поляризации антенн как L(W), дБ.

Формула для определения потерь мощности сигнала из-за неколлинеарности соответствующих полуосей эллипсов поляризации антенн будет иметь вид:

где Kmax - максимальное значение функции K(W), достигаемое при значении угла W=0 градусов, т.е. при коллинеарной ориентации соответствующих полуосей эллипсов поляризации антенн.

С учетом выражения (2), выражение (3) приводится к следующему виду:

Это позволяет рассматривать потери мощности сигнала L(W) из-за неколлинеарности соответствующих полуосей эллипсов поляризации антенн как систематическую погрешность определения формы сечения пространственной диаграммы направленности антенны навигационного спутника.

Если потери мощности сигнала L(W) из-за неколлинеарности соответствующих полуосей эллипсов поляризации антенн определять на основе зарегистрированных наземной антенной данных о мощности навигационного сигнала спутника, осуществляющего на орбите упреждающий разворот вокруг первой оси спутника, то разворот спутника на угол U=180 градусов при Н=0 за период времени Т позволяет охватить ровно один период функции L(W), описывающей потери мощности из-за неколлинеарности соответствующих полуосей эллипсов поляризации антенн. В течение времени t разворота угол между соответствующими полуосями эллипсов поляризации антенн W(t) связан с азимутом линии визирования в связанной с антенной спутника системе координат A(t) следующим образом:

где W0 - неизвестный угол ориентации большой полуоси эллипса поляризации антенны спутника в связанной с антенной спутника системе координат.

Угловая ориентация ортов связанной с антенной навигационного спутника системы координат относительно системы координат, связанной с наземной приемной антенной, однозначно может быть определена в любой момент времени штатного пилотирования спутника, включая моменты упреждающего разворота (см., напр. статью Montenbruck О., Schmid R., Mercier F., Steigenberger P., Noll C., Fatkulin R., Kogure S., Ganeshan A.S. GNSS satellite geometry and attitude models // Advances in Spaces Research. - V. 56 (2015), №6. - P. 1015-1029.).

Зарегистрированные наземной антенной данные об уровне навигационного сигнала спутника, осуществляющего на орбите упреждающий разворот, после оцифровки и нормировки представляют собой отсчеты мощности принятого сигнала PR(ti), дБВт, полученные на интервале времени разворота 0≤ti≤T.

Учитывая, что за время разворота Т изменяется дальность до спутника и надирный угол линии визирования N, а также возможна осевая несимметричность ДН антенны спутника относительно первой оси, дискретная функция мощности PR(ti) путем устранения линейного тренда известными методами преобразуется в дискретную функцию приведенной мощности PR0(ti), дБВт.

Аргумент tM, при котором дискретная функция приведенной мощности PR0(ti) максимальна, принимается за оценку момента времени разворота, в который соответствующие полуоси эллипсов поляризации передающей антенны навигационного спутника и наземной приемной антенны коллинеарны, т.е. W(tM)=0. Тогда из выражения (5) следует:

Применяя выражение (5) к любому моменту времени t, и вводя обозначение А(tM)=АМ получим:

Используя выражения (7) и (4), получаем окончательное выражение для оценки систематической погрешности из-за неколлинеарности соответствующих полуосей эллипсов поляризации передающей антенны навигационного спутника и наземной приемной антенны в функции от азимута линии визирования А в связанной с антенной спутника системе координат:

Устранение систематической погрешности (8) из оцифрованных данных измерений наземной антенной мощности сигнала P(Ai,Ni) дБВт, производится следующим образом:

где P0(Ai,Ni), дБВт - отсчеты мощности сигнала навигационного спутника, приведенной к некоторой постоянной дальности R с устраненной систематической погрешностью из-за неколлинеарности соответствующих полуосей эллипсов поляризации передающей антенны навигационного спутника и наземной приемной антенны.

Способ определения диаграммы направленности антенны навигационного спутника, характеризующийся проведением измерений мощности сигнала, излучаемого передающей антенной навигационного спутника в процессе его нахождения на орбите и принимаемого наземной приемной антенной с высоким коэффициентом усиления таким образом, что проведение каждой отдельно взятой серии измерений мощности сигнала осуществляется только в пределах интервалов времени непрерывной видимости навигационного спутника; преобразованием полученных данных в форму, пригодную для цифровой обработки, последующей нормировкой данных и цифровой обработкой данных; формированием фрагментов диаграммы направленности антенны на основе результатов цифровой обработки данных, учитывающих искажения диаграммы направленности антенны; определением диаграммы направленности антенны на основе совокупности сформированных фрагментов диаграммы направленности антенны, отличающийся тем, что проводятся дополнительные измерения мощности сигнала в период проведения упреждающего разворота навигационного спутника относительно первой оси, ориентированной на Землю, при этом фрагменты диаграммы направленности антенны на основе результатов цифровой обработки данных, позволяющих учесть искажения диаграммы направленности антенны, формируются с учетом поправок, вычисленных на основе полученных данных дополнительных измерений мощности сигнала в период проведения упреждающего разворота навигационного спутника.
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕННЫ НАВИГАЦИОННОГО СПУТНИКА
СПОСОБ ОПРЕДЕЛЕНИЯ ДИАГРАММЫ НАПРАВЛЕННОСТИ АНТЕННЫ НАВИГАЦИОННОГО СПУТНИКА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 68.
01.11.2018
№218.016.98b3

Способ n 1 стимулирующей предпосевной обработки семян

Изобретение относится к сельскому хозяйству. Предложен способ стимулирующей предпосевной обработки семян яровой пшеницы, включающий обработку семян раствором, содержащим стимулятор роста растений. В качестве стимулятора роста растений используют комплексный препарат, включающий в свой состав...
Тип: Изобретение
Номер охранного документа: 0002671167
Дата охранного документа: 29.10.2018
06.12.2018
№218.016.a41b

Пиротехнический патрон инфракрасного излучения

Изобретение относится к боеприпасам, которые в процессе функционирования создают ложную цель, имитирующую нагретые агрегаты летательного аппарата, для защиты от оружия с тепловыми системами наведения. Патрон, содержащий металлическую гильзу с расположенным на дне электровоспламенителем,...
Тип: Изобретение
Номер охранного документа: 0002674043
Дата охранного документа: 04.12.2018
06.12.2018
№218.016.a431

Способ оценки биологической активности препаратов, рекомендуемых для повышения посевных качеств семян зерновых культур

Изобретение относится к области сельского хозяйства. Способ заключается в обработке семян раствором препарата, помещении одинаковых навесок обработанных семян и контрольного необработанного образца в емкости, приведении их в контакт с влагосодержащим субстратом и выдержке семян в контакте с...
Тип: Изобретение
Номер охранного документа: 0002674077
Дата охранного документа: 04.12.2018
15.02.2019
№219.016.ba8c

Способ получения развитой штырьковой теплообменной поверхности

Изобретение относится к теплотехнике и может быть использовано для изготовления штырьковой теплообменной поверхности. Осуществляют двухпроходное подрезание и отгибку поверхностных слоев в несовпадающих направлениях. При этом на первом проходе угол отгибки материала выбирается меньшим или равным...
Тип: Изобретение
Номер охранного документа: 0002679815
Дата охранного документа: 13.02.2019
16.02.2019
№219.016.bb41

Способ перемещения объектов космического мусора с постепенным использованием его вещества космическим аппаратом, оснащенным лазерной двигательной установкой

Изобретение относится к области управления положением объектов в космическом пространстве. Способ перемещения объектов космического мусора с постепенным использованием его вещества в качестве рабочего тела реактивного движителя космическим аппаратом (КА), оснащенным лазерной двигательной...
Тип: Изобретение
Номер охранного документа: 0002679938
Дата охранного документа: 14.02.2019
16.02.2019
№219.016.bb50

Осколочно-фугасный снаряд

Изобретение относится к осколочно-фугасным и, в частности, к осколочно-пучковым снарядам, которые в процессе функционирования одновременно формируют осевое и круговое поля поражения. Технический результат - повышение эффективности осколочного действия снаряда. Снаряд состоит из корпуса с...
Тип: Изобретение
Номер охранного документа: 0002679937
Дата охранного документа: 14.02.2019
16.02.2019
№219.016.bb5e

Осколочно-фугасный боеприпас

Изобретение относится к военной технике, а именно к осколочно-фугасным боеприпасам. Технический результат - повышение эффективности осколочного действия вследствие увеличения плотности распределения числа осколков на единицу площади поверхности земли. Боеприпас содержит отдельные секции с...
Тип: Изобретение
Номер охранного документа: 0002679830
Дата охранного документа: 14.02.2019
16.02.2019
№219.016.bb65

Баллистический модуль и способ проводной электрической связи для регистрации параметров функционирования метаемого измерительного зонда в полном баллистическом цикле

Заявляемые технические решения относятся к области техники и технологий исследования процессов баллистики метаемых тел на всех этапах баллистического цикла, а именно: на этапе внутренней баллистики, в процессах разгона метаемого тела внутри ствола от казенной его части до дульного среза; на...
Тип: Изобретение
Номер охранного документа: 0002679946
Дата охранного документа: 14.02.2019
23.02.2019
№219.016.c6ea

Способ стимулирующей предпосевной обработки семян яровой пшеницы

Производят предпосевную обработку семян яровой пшеницы водным раствором, содержащим стимулятор роста растений. В качестве стимулятора роста растений используют комплексный препарат, включающий в свой состав гиббереллин, гумат калия или натрия и биофунгицид «Фитоспорин-М» при дозе гиббереллина...
Тип: Изобретение
Номер охранного документа: 0002680582
Дата охранного документа: 22.02.2019
23.02.2019
№219.016.c6f5

Способ противодействия оптикоэлектронным системам с лазерным наведением

Изобретение относится к способам защиты важных промышленных, государственных и военных объектов от управляемого оружия с оптико-электронными системами наведения путем создания импульсной оптической помехи. Способ предусматривает регистрацию облучающих лазерных импульсов, декодирование...
Тип: Изобретение
Номер охранного документа: 0002680556
Дата охранного документа: 22.02.2019
+ добавить свой РИД