×
09.05.2019
219.017.50a5

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЕТЕКТИРОВАНИЯ ТЕЧЕЙ ПАРОВОДЯНОЙ СМЕСИ ИЗ ТРУБОПРОВОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации. 5 ил.

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, более конкретно - к детектированию течей пароводяной смеси из трубопроводов, установленных в помещениях, снабженных притоком воздуха, например на АЭС. Применение изобретения позволяет реализовать раннее обнаружение аварийных ситуаций и провести диагностику предаварийных состояний, связанных с появлением и развитием дефектов, приводящих к появлению течей в трубо- и паропроводах.

В настоящее время для детектирования течей из трубопроводов применяются акустические методы контроля наличия течей, основанные на анализе акустических сигналов, распространяющихся по трубопроводам, либо на регистрации акустических шумов, генерируемых при истечении среды через образовавшийся дефект (патент РФ №2221230, 21.09.2001, опубл. 10.01.20004; заявка №96101920, 29.01.1996, опубл. 10.04.1998; патент РФ №2186356, 27.07.2002; С.Б.Шиманский, Б.П.Стрелков, А.Н.Ананьев, А.Н.Любишкин, Т.Инджимо, X.Мочидзуки, И.Касан, К.Йокота, Дж.Каназава. Акустический метод обнаружения течи с помощью высокотемпературных микрофонов. «Атомная энергия», 2005, т.98, с.98-104). Недостатком этих методов является низкая достоверность детектирования, связанная с наличием постоянных акустических шумов.

Известны также методы и устройства для контроля наличия течей, основанные на измерении величины относительной влажности и ее сравнении с ранее измеренными значениями (патент РФ №2268509, пр. 09.02.2004, патент РФ №2271045, пр. 26.07.2004, система контроля влажности FLUS компаний Siemens - Framatom ANP: http://pepei.pennnet.com/displav_article/176783/6/ARCHI/none/PRODJ/1/ Framatome-ANP-Installs-FLUS-System-in-first-US-nuclear-power-plant/). Недостатком этого метода и устройств по его реализации является инерционность, низкая чувствительность и принципиальная невозможность регистрации каких-либо сигналов в условиях 100% относительной влажности.

Наиболее близким по технической сущности и достигаемому результату является способ детектирования течей трубопроводов реакторных установок атомных электростанций, реализованный в устройстве для детектирования течей трубопроводов реакторных установок атомных электростанций (патент РФ №2268509), заключающийся в том, что периодически измеряют значение относительной влажности в контролируемом помещении, через которое проходят трубопроводы реакторной установки, сравнивают измеренное значение относительной влажности с предыдущими значениями и по изменению относительной влажности судят о наличии течи. При этом устройство для реализации способа детектирования течей пароводяной смеси из трубопроводов, установленных в помещении, снабженном притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи.

Недостатком указанного способа детектирования течей трубопроводов реакторных установок атомных электростанций и реализующего его устройства также является большая инерционность, низкая чувствительность и невозможность регистрации каких-либо сигналов в условиях 100% относительной влажности, причем последний недостаток носит принципиальный характер.

Технической задачей настоящего изобретения является повышение чувствительности измерений, увеличение быстродействия и обеспечение возможности проведения измерений даже в условиях 100% относительной влажности, и тем самым повышение надежности и информативности измерений при контроле наличия течей трубопроводов.

Технический результат достигается тем, что в способе детектирования течей пароводяной смеси из трубопровода, установленного в контролируемом помещении, снабженном притоком воздуха, заключающемся в том, что периодически измеряют значение относительной влажности в контролируемом помещении,

сравнивают измеренное значение относительной влажности с предыдущими значениями и по изменению относительной влажности судят о наличии течи,

дополнительно периодически измеряют значения счетной концентрации и функции распределения по размерам частиц аэрозолей в воздухе контролируемого помещения,

сравнивают измеренные значения с предыдущими и о наличии течи судят в первую очередь по изменению счетной концентрации частиц аэрозолей в воздухе контролируемого помещения,

причем дополнительно оценивают величину течи по измеренным значениям относительной влажности, счетной концентрации и функции распределения по размерам частиц аэрозолей в воздухе контролируемого помещения.

Этот технический результат достигается и в случае, если описанный способ детектирования течей пароводяной смеси из трубопровода, установленного в контролируемом помещении, реализуется при 100% относительной влажности.

Технический результат для устройства достигается тем, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженном притоком воздуха, включающее датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.

Сущность изобретения поясняется чертежами.

На фиг.1 приведена принципиальная схема устройства для детектирования течей пароводяной смеси из трубопровода, где 1 - устройство обработки информации, 2 - лазерный датчик аэрозолей, 3 - датчик относительной влажности, 4 - пробоотборная трубка, 5 - блок сравнения величины сигнала лазерного датчика аэрозолей, 6 - блок сравнения сигнала относительной влажности, 7 - база данных, 8 - блок сигнализации, 9 - блок вычисления корреляций.

На фиг.2 представлены результаты измерений дисперсного состава и счетной концентрации частиц аэрозолей, измеренные в помещении с моделируемой утечкой пара (см. пример 1 реализации способа) на расстоянии 5 метров от источника пара. Точка отбора пробы находится в месте выхода воздушного потока из помещения.

Результаты измерений представлены в виде объемной диаграммы: дискретными вертикальными столбцами показаны значения концентрации частиц аэрозолей (част/л), построенными на горизонтальной плоскости, ограниченной осями значений: диаметр частиц и время измерения.

На фиг.3 представлена зависимость от времени измерений общей счетной концентрации частиц аэрозолей (столбики гистограммы) и влажности (точки графика на кривой) в помещении с моделируемой утечкой пара (см. пример 1 реализации способа).

На фиг.4 приведены результаты измерения генерации водных аэрозолей (т.е. зависимости счетной концентрации частиц от времени) при нарушении герметичности паропровода при 100% влажности - (см. пример 2 реализации способа). Сплошной линией показаны результаты для частиц размером 0,3 мкм, звездочками - результаты для частиц размером 0,5 мкм и точками - результаты для частиц 1,0 мкм.

На фиг.5 представлены результаты измерений дисперсного состава (ось мкм) и счетной концентрации (ось InN) частиц водных аэрозолей, образующихся при истечении пароводяной смеси через отверстия различных диаметров (d) (при различных значениях относительной влажности (ось %)) - см. пример 3 реализации способа.

Результаты на фиг.5а соответствуют d=1 мм, на фиг.5b - значению d=1,5 мм, на фиг.5с - значению d=2,5 мм, на фиг.5d - значению d=3,5 мм, на фиг.5е - значению d=4 мм и на фиг.5f- значению d=4,8 мм.

Устройство работает следующим образом.

Воздух из помещения, через которое проходит трубопровод, прокачивается насосом лазерного датчика аэрозолей (2) через пробоотборную трубку (4) и поступает в измерительный объем датчика аэрозолей. Частицы, взвешенные в воздухе, проходят через лазерный луч и рассеивают часть лазерного излучения. Геометрия измерительного объема подбирается таким образом, что чисто статистически частицы пролетают через лазерный луч поодиночке. Таким образом, количество импульсов рассеянного света дает счетную концентрацию частиц, и измерение амплитуды импульсов позволяет определить их размер. Информация о результатах измерений передается в блок сравнения величины сигнала лазерного датчика аэрозолей (5), где происходит, во-первых, сравнение уровня сигнала с предыдущими измеренными значениями (определение тренда), во-вторых, сравнение с информацией из базы данных (7), которая содержит результаты измерений при различной влажности и различной интенсивности генерации пароводяной смеси, подобные представленным на фиг.5. В случае, если сравнение уровня сигнала с предыдущими измеренными значениями или анализ сопоставления с информацией из базы данных не соответствует заданным устройству обработки информации (1) значениям, на блок сигнализации (8) подается команда на включение той или иной команды оповещения оператора либо на подачу управляющего сигнала исполнительным механизмам.

Одновременно с этим датчик относительной влажности (3) измеряет величину относительной влажности, передает результат в блок сравнения сигнала относительной влажности (6), где также происходит сравнение величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика. В случае, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, также на блок сигнализации (8) подается команда на включение той или иной команды оповещения оператора.

При этом результаты как из блока сравнения (5), так и из блока сравнения (6) поступают в блок вычисления корреляций (9), где информация из двух каналов сравнивается. При условии совпадения результатов (сигнал нештатной ситуации) соответствующее оповещение также подается на блок сигнализации (8). Естественно, что совпадение результатов из двух независимых каналов указывает на наступление (или развитие) нештатной ситуации значительно более достоверно.

Важно, что при достижении 100% относительной влажности, когда датчики влажности перестают работать, в то время как регистрация лазерным датчиком образующихся при истечении пароводяной смеси в помещение частиц водного аэрозоля продолжается (см. пример №2 реализации способа).

Введение дополнительных элементов, образующих второй информационный канал, регистрирующий счетную концентрацию и размеры частиц аэрозолей в воздухе контролируемого помещения, позволяет значительно (на порядок) повысить чувствительность измерений (см. пример №1 реализации способа и фиг.3) и, соответственно, увеличить быстродействие устройства. При истечении пароводяной смеси через дефект в трубопроводе интенсивность генерации частиц водного аэрозоля зависит от геометрических размеров дефекта трубопровода (см. пример №3 реализации способа), что сразу же позволяет делать выводы о величине течи.

При реализации способа лазерный датчик аэрозолей снабжается пробоотборной трубкой, что позволяет вынести его в другое помещение, через которое не проходит трубопровод, и тем самым значительно снизить радиационную нагрузку на датчик. Такое техническое решение возможно и для датчика влажности, однако при этом транспортировка пробы приводит к ослаблению сигнала (значения относительной влажности) из-за охлаждения среды. В то же время транспортировка воздуха из помещения с трубопроводами в помещение к лазерному датчику аэрозолей не сказывается на информативности измерений - при охлаждении пробы происходит дополнительная конденсация пара на ядрах конденсации и ослабления сигнала не происходит. Эта закономерность была доказана авторами экспериментально с использованием пробоотборных трубок длиной вплоть до 12 м.

Наконец, вычисление корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей (преимущественно водных) в воздухе контролируемого помещения позволяет не только повысить достоверность измерений каждого из отдельных каналов (влажностного и аэрозольного), но и полностью соответствует требованиям «Руководства по применению концепции безопасности «течь перед разрушением» к трубопроводам АЭУ» (Р-ТПP-01-99), в соответствии с которыми общая система контроля течей ядерных энергетических установок должна использовать, по крайней мере, три независимые дополняющие друг друга системы, осуществляющие контроль по разным физическим параметрам (третьей, обязательной системой является контроль радиационной активности).

Примеры реализации способа.

Пример 1

Высокая эффективность применения мониторинга аэрозолей для обнаружения течей и дефектов паропроводов была подтверждена в ходе экспериментальных исследований дисперсного состава и счетной концентрации частиц аэрозолей в помещении с моделируемой утечкой пара.

Эксперименты проводились непосредственно в технологическом помещении площадью 60 м2, снабженном системой приточной вентиляции и очистки воздуха. В помещении были установлены несколько единиц технологического оборудования, поэтому как условия распространения воздушных потоков, так и чистоту воздуха в помещении можно считать хорошо соответствующими реальным условиям технологических помещений. Измерялась счетная концентрация и дисперсный состав частиц в помещении. Результаты измерений суммарной счетной концентрации представлены на фиг.2.

По результатам целой серии опытов (включенная или выключенная вентиляция, измерения вблизи парогенератора, на максимально возможном расстоянии, при мониторинге суммарного воздушного потока из помещения) можно отметить, что даже в условиях значительного разбавления генерируемых водных частиц в воздушном объеме помещения удалось очень быстро (через 4 минуты после начала генерации пара) четко зафиксировать существенный (в 5-7 раз) рост концентрации аэрозольных частиц, в особенности субмикронных размеров частиц. При этом датчик влажности, установленный в том же помещении, зафиксировал лишь незначительные колебания величины относительной влажности (см. график на фиг.3).

Таким образом, методами аэрозольного мониторинга воздуха в помещении удалось уверенно зарегистрировать утечку пара в помещении на стадии, когда датчики влажности фактически еще не успевали зафиксировать изменение величины влажности воздуха. Более того, этот эффект воспроизводился и при мониторинге суммарного воздушного потока из помещения, т.е. при значительном разбавлении.

Пример 2

Проводились экспериментальные измерения генерации водных аэрозолей при нарушении герметичности паропровода в условиях 100% влажности. В камере поддерживалась 100% относительная влажность, при этом в нее периодически дополнительно подавалась пароводяная смесь из специального генератора-имитатора течи. Из фиг.4 видно, что поступающие в камеру водные частицы уверенно регистрировались датчиком аэрозолей во всех размерных диапазонах. При выключении имитатора течи счетная концентрация частиц падала в несколько раз. Величина относительной влажности при этом оставалась неизменной (100%).

Пример 3

Исследовались дисперсный состав и счетная концентрация частиц водных аэрозолей, образующихся при истечении пароводяной смеси через отверстия различных диаметров (d) при различных значениях относительной влажности. Результаты измерений представлены на фиг.5. Отчетливо видна зависимость счетной концентрации частиц (ось InN) различного размера (ось «мкм») не только от значения относительной влажности (ось «%»), но и от размера отверстия, имитировавшего дефект трубопровода. Наборы данных, подобных приведенному на фиг.5, могут сохраняться в базе данных и использоваться при вычислении корреляций между значениями относительной влажности, счетной концентрации и размерами частиц водных аэрозолей в воздухе контролируемого помещения. Кроме того, данные подобных измерений позволяют делать выводы не только о наличии дефекта, но и о величине течи.

Таким образом, применение настоящего изобретения приводит к повышению чувствительности измерений и увеличению быстродействия, тем самым повышая достоверность и информативность измерений при контроле наличия течей трубопроводов. При этом обеспечивается возможность проведения измерений даже в условиях 100% относительной влажности. Применение изобретения позволяет реализовать раннее обнаружение аварийных ситуаций и провести диагностику предаварийных состояний, связанных с появлением и развитием дефектов, приводящих к появлению течей в трубо- и паропроводах, прежде всего ядерных энергетических установок и реакторов.

Устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженном притоком воздуха, включающее датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, включающим в себя блок сравнения величины сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, и величины текущего сигнала датчика влажности, соединенный с блоком сигнализации, срабатывающим, если величина текущего сигнала датчика превышает в установленное число раз величину сигнала, соответствующего значению относительной влажности в контролируемом помещении в отсутствие течи, отличающееся тем, что устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.
Источник поступления информации: Роспатент

Показаны записи 121-130 из 259.
25.08.2017
№217.015.9db6

Способ извлечения липидов из биомассы микроводорослей chlorella и дрожжей yarrowia lipolytica

Изобретение относится к биотехнологии. Предложен способ извлечения липидов из микроводоросли рода Chlorella и дрожжей Yarrowia lipolytica для получения биодизельного топлива. Способ включает дополнение стадии культивирования микроводорослей Chlorella стадией культивирования дрожжей Yarrowia...
Тип: Изобретение
Номер охранного документа: 0002610675
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a186

Лекарственный препарат противотуберкулезного действия на основе d-циклосерина в виде лиофилизата и способ получения лекарственного препарата

Изобретение относится к фармацевтической промышленности и медицине и представляет собой лекарственный препарат противотуберкулезного действия в виде лиофилизата для перорального применения массой 2.0±0.20 г, содержащий D-циклосерин 12.5±1.25 мас.%, полимер PLGA 50/50 50±5.0 мас.%, поливиниловый...
Тип: Изобретение
Номер охранного документа: 0002606839
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b438

Способ получения радионуклида никель-63

Изобретение относится к способу выделения изотопа Ni из облученной металлической мишени для использования в автономных источниках питания, например, основанных на бетавольтаическом эффекте. Способ включает нагревание металлического никеля, содержащего радионуклид Ni до температуры его испарения...
Тип: Изобретение
Номер охранного документа: 0002614021
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b953

Способ выращивания эпитаксиальной пленки дисилицида европия на кремнии

Изобретение относится к способу получения эпитаксиальной пленки дисилицида европия на кремниевой подложке и может быть использовано для создания контактов истока/стока в технологии производства полевых МОП транзисторов с барьером Шоттки (SB-MOSFET), а также для создания устройств спинтроники в...
Тип: Изобретение
Номер охранного документа: 0002615099
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.ba61

Способ получения наночастиц элементного аморфного селена

Изобретение относится к области биохимии. Предложен способ получения наночастиц элементного аморфного селена. Способ включает внесение селенита натрия в культуру фототрофных бактерий Rhodobacter capsulatus В10 из расчета 5 мМ/л, инкубирование культуры с селенитом, отделение селена от...
Тип: Изобретение
Номер охранного документа: 0002615461
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.be2f

Стенд для калибровки устройства для масс-спектрометрического измерения газовых потоков

Изобретение относится к вакуумной технике, масс-спектрометрической технике и может быть использовано в области исследования газовой проницаемости материалов и задач, сопряженных с точным измерением газовых потоков. Стенд для калибровки устройства масс-спектрометрического измерения газовых...
Тип: Изобретение
Номер охранного документа: 0002616927
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf25

Противоопухолевое лекарственное средство на основе никлозамида

Изобретение относится к фармацевтической промышленности, а именно к противоопухолевому лекарственному средству на основе никлозамида в виде частиц субмикронного размера (не более 500 нм). Лекарственное средство включает, мас.%: никлозамид – 3,6-6,5, сополимер молочной и гликолевой кислот с...
Тип: Изобретение
Номер охранного документа: 0002617049
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c1c1

Способ выделения липидов из биомассы микроводорослей рода chlorella

Изобретение относится к области биотехнологии. Предложен способ выделения липидов для биодизеля из биомассы микроводоросли рода Chlorella. Способ включает гомогенизацию сухой биомассы микроводоросли измельчением, обработку смесью органических растворителей хлороформ-метанол или хлороформ-этанол...
Тип: Изобретение
Номер охранного документа: 0002617959
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.ca35

Способ выращивания эпитаксиальных пленок дисилицида стронция на кремнии

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно новой фазы дисилицида стронция, обладающего в контакте с кремнием низкой высотой барьера Шоттки, и может быть использовано для создания контактов истока/стока в технологии производства полевых...
Тип: Изобретение
Номер охранного документа: 0002620197
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.d0bf

Энергетическая установка

Изобретение относится к воздухонезависимым энергоустановкам и может быть использовано для подводных транспортных средств и для других устройств при отсутствии наружного воздуха. Техническим результатом заявленного изобретения является повышение удельной энергии энергоустановки за счет...
Тип: Изобретение
Номер охранного документа: 0002621300
Дата охранного документа: 01.06.2017
Показаны записи 11-11 из 11.
29.06.2020
№220.018.2c89

Способ косвенного измерения отказоустойчивости облучаемых испытательных цифровых микросхем, построенных различными способами постоянного поэлементного резервирования, и функциональная структура испытательной микросхемы, предназначенной для реализации этого способа

Изобретение относится к способам косвенного измерения отказоустойчивости облучаемых цифровых испытательных микросхем, построенных различными способами постоянного поэлементного резервирования, и к испытательным микросхемам для реализации этих способов измерения. Технический результат - создание...
Тип: Изобретение
Номер охранного документа: 0002724804
Дата охранного документа: 25.06.2020
+ добавить свой РИД