×
09.05.2019
219.017.5084

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ГАРМОНИЧЕСКОГО СИГНАЛА

Вид РИД

Изобретение

№ охранного документа
0002466413
Дата охранного документа
10.11.2012
Аннотация: Способ может быть применен в средствах измерений пассивных и активных комплексных величин, например, в мостах и компенсаторах переменного тока или в измерителях параметров электрических цепей, а также в векторных вольтметрах, путем измерения вектора гармонического сигнала в случае действия нескольких периодических помех. Техническим результатом является повышение точности измерения в реальном времени вектора гармонического сигнала с известным периодом, действующего совместно с периодическими сигналами помех, описываемыми непрерывными функциями, при условии, что периоды их тоже известны и не кратны периоду измеряемого сигнала, а также возможность измерения полезных гармонических сигналов из числа сигналов помех. Способ состоит в том, что проекции р' и р” измеряемого сигнала S(t)=Asin(2πt/T+φ) на два ортогональных вектора опорных сигналов, связанные с его амплитудой А и начальным фазовым сдвигом φ, получают путем неравномерной дискретизации суммарного сигнала и суммирования его дискрет, выборку которых производят мгновенными импульсами, действующими в моменты времени, образующие соответственно для р' и р” множества и , где ΔТ=(2r±1)Т/4. r=0, 1, 2,…, которые формируют пошагово согласно условию где k=1, 2,…, a - номер шага, совпадающий с номером сигнала помехи P(t), так что , и знакопеременного суммирования дискрет σ(t) с коэффициентами a, причем модули а принимают равными единице, а знаки определяют в зависимости от номеров дискрет согласно условию по соотношениям: и где b=0,1 - значение j-го разряда представленного в двоичной системе счисления номера момента времени выборки i-й дискреты суммарного сигнала σ(t), а - номер младшего значащего разряда, b, при этом определяют k как номер элемента b множества {b}, где b=1, согласно условию k=inf1. 1 ил.

Изобретение относится к области электроизмерительной техники и может быть использовано в средствах измерений пассивных и активных комплексных величин, например, в мостах и компенсаторах переменного тока или в измерителях параметров электрических цепей, а также в векторных вольтметрах.

Известен способ измерения параметров двухполюсников, имеющих сложные схемы замещения, с помощью разветвленной мостовой измерительной цепи при воздействии на нее нескольких тестовых гармонических сигналов с разными частотами, разделяемых в процессе уравновешивания цепи с помощью аналоговых фильтров [Шеремет Л.П. Принципы построения мостовых измерительных цепей для одновременного уравновешивания на нескольких частотах // Проблемы технической электродинамики, вып.54, Киев: Наукова думка. 1975. - С.14-19].

Данный способ позволяет производить измерения сложных объектов исследования одновременно на нескольких частотах, обеспечивая тем самым возможность получения информации о быстроизменяющихся параметрах таких объектов и/или о протекающих в них процессах. Однако аналоговые фильтры, которые применяют для разделения сигналов с разными частотами и от избирательности которых зависят помехоустойчивость и точность измерения, обладают инерционностью и сложностью реализации, возрастающими по мере повышения их избирательности, что является недостатком способа.

Известен также принятый автором за прототип способ измерения вектора любого из М совместно действующих гармонических сигналов Sj(t)=Ajsin(2πt/Tj0j), в том числе помех, с заданными и не кратными друг другу значениями периодов Tm, имеющего, как и они, известный период Tj и неизвестные начальный фазовый сдвиг φ0j и амплитуду Aj, при которой проекции и сигнала Sj(t) на два ортогональных вектора опорных сигналов, связанные с Aj и φ0j, например, соотношениями и , измеряют путем выборки и суммирования дискрет суммарного сигнала с помощью мгновенных импульсов, действующих в моменты времени, образующие множества и , а значения и определяют по соотношениям и , где - нормирующий множитель, причем формируют с помощью пошаговой процедуры, начинающейся с исходного множества в виде произвольного начального момента t0 и раздвоения его на первом шаге путем получения дополнительного множества посредством сдвига исходного на нечетное число полупериодов первого (подавляемого) сигнала или гармонической помехи, и далее получения на каждом последующем шаге дополнительного множества посредством сдвига полученного на предыдущем шаге (суммарного) множества на нечетное число nm полупериодов m-го (подавляемого) сигнала до тех пор, пока число шагов не станет равным М-1 [1. Патент РФ на изобретение №2377577, МКИ G01R 17/10. Способ измерения вектора гармонического сигнала / Агамалов Ю.Р // Изобретения - 2009 - №26. - Опубл. 27.12.09. 2. Агамалов Ю.Р. Метод измерения векторов совместно действующих гармонических сигналов на основе их дискретизации и суммирования дискрет // Метрология. - 2010. - №12. - С.26-35].

Недостатком данного способа являются погрешности измерения, связанные с действием аддитивных периодических помех несинусоидального вида, которые возникают в измерительной аппаратуре, в частности, в цифровых мостах и компенсаторах переменного тока или анализаторах электрических цепей, а также в векторных вольтметрах благодаря функционированию разного рода генераторов с известными частотами, как внутренних, например, в цепях индикации и других узлах, так и внешних.

Техническим результатом изобретения является повышение точности измерения в реальном времени вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом Т, действующего совместно с сигналами помех Pn(t), где , в том случае, когда помехами являются периодические сигналы Pn(t)=Pn(t-Tn), где Pn(t) - непрерывные функции с известными периодами Tn, не кратными Т. При этом в качестве измеряемого может выступать любой из гармонических сигналов, входящих в число N-1 периодических помех, так что все гармонические сигналы из σ(t) могут быть поочередно измерены, а при соответствующем увеличении числа каналов - и параллельно.

Технический результат достигается тем, что в способе измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ0) с известным периодом Т, действующего совместно с сигналами помех Pn(t), где, , при котором амплитуду А и начальный фазовый сдвиг φ0 сигнала S(t) определяют, например, по соотношениям A=[(p')2+(p”)2]1/2 и φ0=arctg(p'/p”), где р' и р” - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения р' и р” получают путем неравномерной дискретизации суммарного сигнала и суммирования его дискрет, выборку которых производят мгновенными импульсами, действующими в моменты времени, образующие соответственно для р' и р” множества и , где ΔТ=(2r±1)T/4. r=0, 1, 2,…, при этом в том случае, когда помехами являются периодические сигналы Pn(t)=Pn(t-Tn), где Tn - периоды сигналов помех, a Pn(t) - непрерывные функции, проекции р' и р” сигнала S(t) измеряют путем неравномерной дискретизации суммарного сигнала σ(t) на множестве моментов времени , которое формируют пошагово согласно условию где kn=1, 2,…, a - номер шага, совпадающий с номером сигнала помехи Pn(t), так что , и знакопеременного суммирования дискрет σ(t) с коэффициентами a i, причем модули a i принимают равными единице, а знаки определяют в зависимости от номеров дискрет согласно условию , по соотношениям: , , и где bj=0,1 - значение j-го разряда представленного в двоичной системе счисления номера момента времени выборки i-й дискреты суммарного сигнала σ(t), a - номер младшего значащего разряда bj, при этом определяют k как номер элемента b1 множества {b1}, где b1=1, согласно условию k=inf1.

Изобретение поясняется чертежом, на котором отображена пошаговая процедура формирования множества моментов времени выборки дискрет суммарного сигнала σ(t), а также единичных коэффициентов a i, определяющих знаки суммирования этих дискрет.

На первой строке чертежа изображено порождающее множество импульсов выборки дискрет, состоящее из одного (начального) импульса с положительной амплитудой, знак которой, как и всех других импульсов, соответствует знаку коэффициента a i суммирования сформированной начальным импульсом дискреты, т.е. в данном случае коэффициента а 1.

На второй строке изображено множество импульсов, сформированное на множестве моментов времени выборки дискрет , соответствующем первому шагу формирования и состоящем из двух импульсов, где второй согласно условию при n=1, имеет отрицательную амплитуду, знак которой совпадает со знаком а 2 суммирования формируемой им (второй) дискреты.

На последующих строках чертежа изображены множества импульсов выборки дискрет, сформированные на множествах моментов времени , , , т.е. на втором, третьем и четвертом шагах процедуры формирования , и имеющие знаки амплитуд, соответствующие соотношению .

Сущность изобретения состоит в том, что предлагаемая (пошаговая) процедура формирования множества моментов времени выборки дискрет суммарного сигнала σ(t), т.е. их расстановки во времени, а также знаков их суммирования позволяет точно и быстро (в реальном времени) измерять проекции р' и р” гармонического сигнала S(t) инвариантно по отношению к действующим вместе с ним N-1 периодическим помехам Pn(t), в том числе полезным гармоническим сигналам, выступающим в процессе измерения S(t) в качестве помех, при условии, что их периоды не кратны периоду S(t), т.е. исключить или минимизировать в зависимости от точности информации о периодах сигналов Pn(t) и S(t) влияние сигналов Pn(t) на точность измерения проекций р' и р” сигнала S(t), а значит, и на точность измерения А и φ0.

Достигают этого тем, что множество моментов времени действия обозначенных на чертеже мгновенных импульсов, с помощью которых производят выборку дискрет суммарного сигнала σ(t), а также знаки этих импульсов, в соответствии с которыми производят знакопеременное, или алгебраическое, суммирование дискрет этого сигнала, формируют с помощью процедуры пошагового подавления, т.е. исключения или минимизации в зависимости от точности информации о значениях периодов S(t) и Pn(t) влияния на точность измерения S(t) всех сигналов, действующих вместе с ним, согласно условию , где , kn=1, 2, …, а - номер шага, совпадающий с номером сигнала помехи Pn(t), и знакопеременного суммирования дискрет σ(t) с коэффициентами a i, причем модули a i принимают равными единице, а знаки определяют в зависимости от номеров дискрет согласно условию , по соотношениям: , , и где bj=0,1 - значение j-го разряда представленного в двоичной системе счисления номера момента времени выборки i-й дискреты суммарного сигнала σ(t), а - номер младшего значащего разряда, bj, при этом определяют k как номер элемента b1 множества {b1}, где b1=1, согласно условию k=inf1.

Поясним математически механизм подавления сигналов, сопутствующих измеряемому, и выведем фигурирующие в формуле изобретения соотношения.

Согласно определению периодического сигнала Pn(t)=Pn(t-Tn). Из этого соотношения непосредственно следует, что верно и более общее соотношение: Pn(t)=Pn(t-knTn), или Pn(t)-Pn(t-knTn)=0. Таким образом, P1(t)-P1(t-k1T1)=0, т.е., если импульсы выборки первых двух дискрет расставить друг относительно друга на расстоянии k1T1, то разность, или алгебраическая сумма, дискрет сигнала P1(t), полученных с помощью этих импульсов, изображенных на чертеже на второй строке и действующих в моменты времени и , будет равна нулю. При этом согласно условию некратности периода P1(t) периоду измеряемого сигнала S(t) разность дискрет последнего, полученных на моментах времени и , равна нулю не будет. Заметим также, что, если в дальнейшем производить дискретизацию σ(t) с помощью пар импульсов выборки, отстоящих друг от друга на интервал k1T1 и имеющих при этом разные знаки, то алгебраические суммы этих дискрет для сигнала P1(t) будут равны нулю вне зависимости от числа и расстановки во времени этих пар. Далее, если расставить эти пары на расстоянии k2T2 и при этом с противоположными знаками, то согласно [1, 2] они будут эквивалентны двум дискретам P2(t), имеющим разные знаки и, следовательно, будут иметь место соотношения: и . Иначе говоря, алгебраическая сумма (четырех) дискрет сигнала σ(t), сформированных в моменты времени , , , и изображенных на третьей строке чертежа, будет инвариантна (нечувствительна), опять таки в меру точности информации о периодах всех сигналов, уже к двум сигналам P1(t) и Р2(t).

Множество импульсов выборки дискрет, сформированное на третьем шаге и изображенное на четвертой строке чертежа, состоит из двух множеств: , сформированного на втором шаге, и , образованного путем сдвига на интервал k3T3, с общим шагом четверка дискрет инвариантна сигналам P1(t) и Р2(t), а множества и сдвинуты друг относительно друга на интервал k3T3, суммарное множество будет инвариантно трем сигналам помех: P1(t), P2(t) и Р3(t).

Продолжая подобную пошаговую процедуру, с помощью метода математической индукции получим, что сформированное на n-м шаге множество будет обеспечивать инвариантность суммы дискрет σ(t) к при числе дискрет, равном 2N, а на N-1-м шаге будет иметь место инвариантность суммы дискрет σ(t) к при общем числе дискрет, равном 2N-1.

Выведем теперь соотношение, связывающее знаки алгебраического суммирования дискрет σ(t) с характеризующими номера дискрет параметрами. Для этого запишем номер i дискреты σ(t) в двоичной системе счисления: и представим его в показательной форме: , где νi - число нулевых bj перед первым значащим разрядом i, a µi - нечетное число, начинающееся и оканчивающееся единицами, а также учтем, что моменты выборки дискрет σ(t) расставляют, а знаки их суммирования определяют согласно условиям: при , где n - номер шага, откуда следует, При этом, учтем также, что смещение на n-м шаге момента выборки дискреты с номером i на интервал knTn означает изменение его номера на 2n единиц.

Таким образом, если в двоичном числе µi исключить последнюю единицу, то полученное число будет означать номер дискреты с знаком, противоположным знаку дискреты с номером µi. Если теперь в числе тоже исключить последнюю единицу, то получится число , представляющее собой номер дискреты со знаком, противоположным знаку дискреты с номером . Продолжая эту процедуру до того момента, когда µi станет равным единице, получим число при этом , где r - количество единичных разрядов в числе µi. Но количество единичных разрядов в числе µi равно количеству единиц в числе i. В результате окончательно будем иметь , или .

Установим теперь связь знака дискреты с номером со знаком первой дискреты, который по определению является плюсом.

Для этого примем во внимание то, что множества формируют пошагово согласно соотношению , что знаки полученных на этих множествах дискрет определяют по условию и что при этом число моментов выборки дискрет на каждом шаге увеличивается в два раза, поскольку множество образуют путем сдвига относительно самого себя на интервал knTn.

Учитывая все это, получим, что на первом шаге последняя дискрета множества суммируется со знаком минус. На втором шаге последняя дискрета множества будет суммироваться со знаком, противоположным знаку суммирования последней дискреты множества, полученного на предыдущем (первом) шаге, и т.д. Таким образом, на каждом последующем шаге знак суммирования последней дискреты, имеющей номер 2n, будет противоположным знаку суммирования дискреты с номером 2n-1, а следовательно, если в номере дискреты i перед первым значащим разрядом имеют место νi нулей, то знак ее по отношению к положительному знаку первой дискреты будет измененным νi раз, т.е. столько раз, сколько нулей имеет место перед первым значащим разрядом числа i, или k-1 раз, где k - номер первого значащего разряда числа i, представленного в двоичной системе счисления. Таким образом, знак i-й дискреты будет измененным по отношению к первой раз, откуда следует, что .

Итак, все соотношения, входящие в формулу изобретения, математически обоснованы.

Способ измерения вектора гармонического сигнала S(t)=Asin(2πt/T+φ) с известным периодом Т, действующего совместно с сигналами помех P(t), где , а N - число сигналов помех, при котором амплитуду А и начальный фазовый сдвиг φ сигнала S(t) определяют, например, по соотношениям A=[(p')+(p″)] и φ=arctg(p'/p″), где р' и р″ - проекции вектора сигнала S(t) на два ортогональных вектора опорных сигналов, а значения р' и р″ получают путем неравномерной дискретизации суммарного сигнала и суммирования его дискрет, выборку которых производят мгновенными импульсами, действующими в моменты времени, образующие соответственно для р' и р″ множества и , где ΔТ=(2r±1)Т/4, r=0, 1, 2,…, отличающийся тем, что в том случае, когда помехами являются периодические сигналы P(t)=P(t-T), где T - известные периоды сигналов помех, a P(t) - непрерывные функции, проекции р' и р″ сигнала S(t) измеряют путем неравномерной дискретизации суммарного сигнала σ(t) на множестве моментов времени которое формируют пошагово согласно условию где k=1, 2,…, a - номер шага, совпадающий с номером сигнала помехи P(t), так что , и знакопеременного суммирования дискрет σ(t) с коэффициентами a, причем модули a принимают равными единице, а знаки определяют в зависимости от номеров дискрет согласно условию по соотношениям: где b=0,1 - значение j-го разряда, представленного в двоичной системе счисления номера момента времени выборки i-й дискреты суммарного сигнала σ(t), a - номер младшего значащего разряда b, при этом определяют k как номер элемента b множества {b}, где b=1, согласно условию k=inf1.
Источник поступления информации: Роспатент

Показаны записи 81-90 из 101.
29.04.2019
№219.017.44bb

Гидравлический вариатор с высоким передаточным числом

Изобретение относится к объемным гидравлическим передачам вращательного движения и может быть использовано, в частности, в коробках перемены передач в транспортных системах. Гидравлический вариатор состоит из гидронасоса и гидродвигателя. Гидронасос имеет всасывающий (1) и нагнетательный (2)...
Тип: Изобретение
Номер охранного документа: 0002451851
Дата охранного документа: 27.05.2012
09.05.2019
№219.017.4c6c

Способ управления движением корабля с диагнозом сбоев

Изобретение относится к технике управления движением корабля. Согласно предложенному способу производят непрерывное диагностирование исправности работы отдельных модулей системы автоматического управления движением (САУД) корабля и выявляют неисправности в работе измерительного блока САУД. Для...
Тип: Изобретение
Номер охранного документа: 0002394721
Дата охранного документа: 20.07.2010
09.05.2019
№219.017.4e76

Устройство для измерения толщины диэлектрического покрытия

Изобретение относится к измерительной технике. Технический результат: повышение точности измерения толщины диэлектрического покрытия, нанесенного на диэлектрическую основу. Устройство содержит генератор электромагнитных колебаний 1, соединенный выходом с излучателем 2, первый приемник 3, первый...
Тип: Изобретение
Номер охранного документа: 0002413180
Дата охранного документа: 27.02.2011
09.05.2019
№219.017.4f01

Способ контроля значения а-анизотропийной нормы линейной системы без памяти

Изобретение относится к области испытания и контроля элементов систем управления, контроля параметров устройств, осуществляющих линейные преобразования сигналов, а также к генерации тестирующих входных данных. Техническим результатом является повышение надежности определения оценки снизу...
Тип: Изобретение
Номер охранного документа: 0002453904
Дата охранного документа: 20.06.2012
09.05.2019
№219.017.4f04

Декодер фазомодулированного сигнала

Изобретение относится к технике декодирования сигналов, передаваемых фазомодулированным кодом. Техническим результатом является расширение его функциональных возможностей за счет обеспечения единообразного декодирования информационных и синхронизирующих бит. Декодер фазомодулированного сигнала...
Тип: Изобретение
Номер охранного документа: 0002453991
Дата охранного документа: 20.06.2012
09.05.2019
№219.017.4f8a

Способ порождения спрайта

Изобретение относится к способам создания спрайтов, представляющих собой изображения неправильной формы и накладываемых на фоновые изображения, предпочтительно в реальном времени. Техническим результатом является повышение надежности порождения спрайта. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002405205
Дата охранного документа: 27.11.2010
09.05.2019
№219.017.4fab

Магниторезистивный датчик

Изобретение может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК). Магниторезистивный датчик содержит подложку с диэлектрическим...
Тип: Изобретение
Номер охранного документа: 0002433507
Дата охранного документа: 10.11.2011
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
09.05.2019
№219.017.507a

Способ преобразования электрического сигнала в струйный

Изобретение относится к области автоматики и может быть использовано для преобразования электрического сигнала в струйный в электроструйных системах автоматического управления с повышенными требованиями к быстродействию и помехозащищенности. В процессе преобразования электрического сигнала в...
Тип: Изобретение
Номер охранного документа: 0002465490
Дата охранного документа: 27.10.2012
09.05.2019
№219.017.50ab

Способ определения влагосодержания вещества

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам. В частности, оно может быть применено при...
Тип: Изобретение
Номер охранного документа: 0002468358
Дата охранного документа: 27.11.2012
Показаны записи 1-4 из 4.
10.09.2014
№216.012.f3f3

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники и может использоваться при измерениях пассивных и активных комплексных электрических величин. Способ состоит в том, что амплитуду А и начальный фазовый сдвиг φ вектора гармонического сигнала S(t) с известным периодом Т, действующего...
Тип: Изобретение
Номер охранного документа: 0002528274
Дата охранного документа: 10.09.2014
27.03.2016
№216.014.c952

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных, в том числе комплексных, величин переменного тока, например, в мостах и компенсаторах переменного тока или в измерителях (анализаторах) параметров электрических...
Тип: Изобретение
Номер охранного документа: 0002578742
Дата охранного документа: 27.03.2016
25.08.2017
№217.015.a8f2

Способ измерения векторов гармонических сигналов с постоянной составляющей

Изобретение относится к области электроизмерительной техники. Сигналы , где , имеют известные некратные друг к другу периоды T и действуют вместе с постоянной составляющей W, при этом амплитуды A и начальные фазовые сдвиги ϕ сигналов G(t) определяют по соотношениям и , где p и p - проекции...
Тип: Изобретение
Номер охранного документа: 0002611256
Дата охранного документа: 21.02.2017
11.03.2019
№219.016.d99a

Способ измерения вектора гармонического сигнала

Изобретение относится к области электроизмерительной техники. Способ может быть применен в средствах измерений пассивных и активных комплексных величин переменного тока, например в мостах переменного тока для измерения параметров многоэлементных двухполюсников, путем уравновешивания...
Тип: Изобретение
Номер охранного документа: 0002377577
Дата охранного документа: 27.12.2009
+ добавить свой РИД