×
09.05.2019
219.017.5046

ЗЕНИТНЫЙ РАКЕТНЫЙ КОМПЛЕКС

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к военной технике, а именно к зенитным ракетным комплексам ближнего действия, и предназначено для поражения воздушных, преимущественно низколетящих, целей. На транспортном средстве (1) на двухкоординатном поворотном устройстве (2) установлен блок (3) зенитных ракет с имеющими оптико-электронные каналы (18) головками (4) самонаведения. Зенитный ракетный комплекс включает также оптико-электронную систему с установленной на блоке (3) зенитных ракет прицельной головкой (7), вычислительным блоком (8), монитором (9) и блоком (10) управления. Предусмотрен блок (17) совмещения изображений, входы которого электрически соединены с выходами оптико-электронных каналов (18) головок (4) самонаведения, а выход электрически соединен с входом вычислительного блока (8). Фотоприемные устройства (20) оптико-электронных каналов (18) головок (4) самонаведения выполнены матричными. Размеры полей зрения объективов (19) оптико-электронных каналов (18) головок (4) самонаведения выполнены такими, чтобы эти объективы (19) при определенной их ориентации в пространстве имели возможность совместно перекрыть наблюдаемое ими пространство без пропусков, образуя в совокупности широкое поле зрения, по размерам тождественное полю зрения объектива (14) прицельной головки (7) оптико-электронной системы. Блок совмещения изображений (17) выполнен с возможностью получения из отдельных узкопольных изображений оптико-электронных каналов (18) головок (4) самонаведения объединенного широкопольного изображения наблюдаемого пространства, тождественного широкопольному изображению прицельной головки (7) оптико-электронной системы. Зенитный ракетный комплекс характеризуется повышенной эффективностью за счет обеспечения возможности осуществления пуска ракет одним сразу по многим целям. 4 з.п. ф-лы, 2 ил.
Реферат Свернуть Развернуть

Изобретение относится к военной технике, а именно к зенитным ракетным комплексам ближнего действия, и предназначено для поражения воздушных, преимущественно низколетящих, целей.

Известен зенитный ракетно-пушечный комплекс, который имеет размещенную на башне пусковую установку с ракетами и оптико-электронную систему, в состав которой входят тепловизионный прибор с телеавтоматом, ИК пеленгатор, антенна с передатчиком команд на зенитные управляемые ракеты и приводы оптико-электронной системы. Выход тепловизионного прибора соединен с входом телеавтомата, который измеряет координаты цели. Выходы телеавтомата соединены с первыми входами блока выработки команд управления. Пуск ракеты производится с пульта пуска, с момента схода ракеты измеряется текущее время. ИК-пеленгатор измеряет координаты ракеты после ее схода, причем его выходы соединены со вторыми входами блока выработки команд управления. Тепловизионный прибор и ИК-пеленгатор размещены на одном основании. Блок выработки команд управления вычисляет отклонение ракеты от цели и по этой разности определяет команды управления. Выход блока выработки команд управления соединен с входом передатчика, который кодирует команды управления и передает их на борт ракеты. Ракета воспринимает своей аппаратурой эти команды и сближается с целью. Оптико-электронная система осуществляет сопровождение и измерение угловых координат цели по тепловому контрасту цели путем удержания цели в центре тепловизионного растра, а также фиксацию момента схода ракеты, захват, сопровождение и определение инфракрасным пеленгатором угловых координат ракеты относительно линии визирования цели (патент РФ №2131577).

Одним из недостатков данного зенитного ракетно-пушечного комплекса является возникающая в процессе эксплуатации инструментальная погрешность рассогласования оптических осей тепловизионного прибора и ИК-пеленгатора, обусловленная нежесткостью конструкции, изменением установочных размеров за счет температурных и других факторов. Это приводит к ошибкам определения отклонения ракеты от линии визирования цели и недопустимым величинам промаха ракеты относительно цели, что резко снижает эффективность комплекса.

Недостатком данного зенитного ракетно-пушечного комплекса является также невозможность осуществления пуска ракет одним зенитным ракетным комплексом сразу по многим целям, например, по крылатым ракетам противника, летящим друг за другом с минимальными промежутками времени.

Наиболее близким по технической сущности, достигаемому результату и выбранным за прототип является зенитный ракетный комплекс, включающий транспортное средство, на котором на двухкоординатном поворотном устройстве установлен блок зенитных ракет с имеющими оптико-электронные каналы головками самонаведения, а также инфракрасную оптико-электронную систему с прицельной головкой, установленной на блоке зенитных ракет с возможностью кругового обзора, вычислительным блоком, блоком выделения координат, монитором и блоком управления (патент РФ №2241193).

Недостатком прототипа также является невозможность осуществления пуска ракет одним зенитным ракетным комплексом сразу по многим целям, например, по крылатым ракетам противника, летящим друг за другом с минимальными промежутками времени.

Кроме того, прототип не позволяет эффективно бороться с «тепловыми ловушками» самолетов противника.

Технический результат заявляемого изобретения заключается в повышении эффективности зенитного ракетного комплекса, за счет обеспечения возможности осуществления пуска ракет одним зенитным ракетным комплексом сразу по многим целям, например, по крылатым ракетам противника, летящим друг за другом с минимальными промежутками времени.

Кроме того, техническим результатом заявляемого изобретения является возможность эффективной борьбы с «тепловыми ловушками» самолетов противника.

Сущность заявляемого изобретения заключается в том, что зенитный ракетный комплекс включает транспортное средство, на котором на двухкоординатном поворотном устройстве установлен блок зенитных ракет с имеющими оптико-электронные каналы головками самонаведения, а также оптико-электронную систему с установленной на блоке зенитных ракет прицельной головкой, вычислительным блоком, монитором и блоком управления. Зенитный ракетный комплекс также включает блок совмещения изображений, входы которого электрически соединены с выходами оптико-электронных каналов головок самонаведения, а выход электрически соединен с входом вычислительного блока.

Фотоприемные устройства оптико-электронных каналов головок самонаведения выполнены матричными.

Размеры полей зрения объективов оптико-электронных каналов головок самонаведения выполнены такими, чтобы эти объективы при определенной их ориентации в пространстве имели возможность совместно перекрыть наблюдаемое ими пространство без пропусков, образуя в совокупности широкое поле зрения, по размерам тождественное полю зрения объектива прицельной головки оптико-электронной системы. Блок совмещения изображений выполнен с возможностью получения из отдельных узкопольных изображений оптико-электронных каналов головок самонаведения объединенного широкопольного изображения наблюдаемого пространства, тождественного широкопольному изображению прицельной головки оптико-электронной системы.

Выполнение фотоприемных устройств оптико-электронных каналов головок самонаведения матричными позволяет получить в совокупности широкое поле зрения, по размерам тождественное полю зрения объектива прицельной головки оптико-электронной системы, а также как предотвратить перенацеливание головок самонаведения на «тепловые ловушки» после захвата цели на автосопровождение, так и направить ракеты в наиболее уязвимые части целей.

Прицельная головка оптико-электронной системы и оптико-электронные каналы головок самонаведения могут быть выполнены телевизионными, тепловизионными или тепло-телевизионными, т.е. интегрированными.

При выполнении оптико-электронных каналов головок самонаведения тепловизионными, головка самонаведения включает запоминающее устройство, цифровой коррелятор и блок управления приводами рулевых плоскостей ракет, при этом выходы запоминающего устройства и тепловизионного оптико-электронного канала подключены к входу коррелятора, а выход коррелятора подключен к блоку управления приводами рулевых плоскостей ракет.

Предложенное техническое решение поясняется чертежами, где:

на фиг.1 изображена принципиальная блок-схема зенитного ракетного комплекса;

на фиг.2 изображена принципиальная блок-схема тепловизионной головки самонаведения.

Зенитный ракетный комплекс включает транспортное средство 1, на котором на двухкоординатном поворотном устройстве 2 установлен блок из 16 зенитных ракет 3 с тепловизионными головками самонаведения 4. В качестве транспортного средства 1 могут использоваться различные самоходные или транспортируемые средства, например автомобиль или надводное судно.

Двухкоординатное поворотное устройство 2 выполнено с возможностью поворота в горизонтальной плоскости в пределах ±180° и с возможностью поворота в вертикальной плоскости в пределах -5÷+85° с помощью приводов по азимуту 5 и углу места 6.

Поиск и обнаружение целей осуществляется с помощью оптико-электронной системы, включающей тепловизионную прицельную головку 7, вычислительный блок 8, монитор 9 и блок управления 10. Тепловизионная прицельная головка 7 установлена на блоке зенитных ракет 3. В состав блока управления 10 входят клавиатура 11 и джойстик 12.

Тепловизионный канал 13 прицельной головки 7 выполнен как канал широкого поля зрения и имеет объектив 14, микроболометрическую матрицу 15 форматом 640×480 пикселов и блок обработки сигнала 16.

Зенитный ракетный комплекс дополнительно включает блок совмещения изображений 17, входы которого электрически соединены с выходами тепловизионных оптико-электронных каналов 18 головок самонаведения 4 зенитных ракет.

Оптико-электронные каналы 18 головок самонаведения 4 и прицельная головка 7 оптико-электронной системы могут быть выполнены также телевизионными или интегрированными, т.е. тепло-телевизионными.

Блок совмещения изображений 17 выполнен с возможностью получения из отдельных узкопольных изображений тепловизионных оптико-электронных каналов 18 головок самонаведения 4 объединенного широкопольного изображения наблюдаемого пространства, тождественного широкопольному изображению тепловизионного канала 13 прицельной головки 7 оптико-электронной системы.

Выход блока совмещения изображений 17, выход тепловизионного канала 13 прицельной головки 7, выход клавиатуры 11 и выход джойстика 12 подключены соответственно к первому, второму, третьему и четвертому входам вычислительного блока 8.

Первый, второй, третий и четвертый выходы вычислительного блока 8 подключены соответственно к входу монитора 9, входу привода (на чертеже не показан) головок самонаведения 4 и входам приводов по азимуту 5 и углу места 6 двухкоординатного поворотного устройства 2.

Тепловизионные оптико-электронные каналы 18 головок самонаведения 4 включают объектив 19, микроболометрическую матрицу 20 форматом 160×120 пикселов, установленную в фокальной плоскости объектива 19 с возможностью автоподфокусировки и блок обработки сигнала 21. Выполнение фотоприемного устройства оптико-электронного канала 18 головки самонаведения 4 матричным позволяет, как предотвратить перенацеливание головки самонаведения 4 на «тепловую ловушку» после захвата цели на автосопровождение, так и направить ракету в наиболее уязвимую часть цели.

Тепловизионные головки самонаведения 4, кроме того, включают запоминающее устройство 22, цифровой коррелятор 23 и блок управления 24 приводами рулевых плоскостей ракеты. Выходы запоминающего устройства 22 и блока обработки сигнала 21 подключены ко входу цифрового коррелятора 23. Выход цифрового коррелятора 23 подключен к блоку управления 24 приводами рулевых плоскостей ракеты.

Головки самонаведения 4 зенитных ракет выполнены с возможностью ориентировки в исходном положении таким образом, чтобы поля обзора объективов 19 их оптико-электронных каналов 18 совместно перекрывали наблюдаемое пространство без пропусков, образуя в совокупности широкое поле зрения, тождественное полю зрения объектива 14 тепловизионного канала 13 прицельной головки 7 оптико-электронной системы.

Зенитный ракетный комплекс работает следующим образом.

Оператор с блока управления 10 с помощью двухкоординатного поворотного устройства 2 в пределах ±180° в горизонтальной плоскости и в пределах -5°÷+85° в вертикальной плоскости, осуществляя поворот блока зенитных ракет 3 вместе с тепловизионной прицельной головкой 7, производит поиск цели.

Объективы 19 тепловизионных каналов 18 головок самонаведения 4 в исходном положении сориентированы в пространстве таким образом, чтобы перекрыть наблюдаемое ими пространство без пропусков, образуя в совокупности широкое поле зрения, по размерам тождественное полю зрения объектива 14 прицельной головки 7 оптико-электронной системы.

Формируемый тепловизионным каналом 13 прицельной головки 7 сигнал изображения поступает в вычислительный блок 8.

Одновременно, тепловизионные оптико-электронные каналы 18 головок самонаведения 4 формируют сигналы собственных узкопольных изображений, которые поступают в блок совмещения изображений 17. Блок совмещения изображений 17 из сигналов отдельных узкопольных изображений тепловизионных оптико-электронных каналов 18 головок самонаведения 4 формирует сигнал объединенного широкопольного изображения наблюдаемого пространства, тождественного широкопольному изображению объектива 14 прицельной головки 7 оптико-электронной системы, который поступает в вычислительный блок 8.

В вычислительном блоке 8 происходит селекция сигналов. Сигналы от неподвижных источников излучения тепла отсеиваются и в дальнейшем не выводятся на монитор 9. На мониторе 9 отражается воздушная обстановка с учетом только движущихся целей.

При вхождении N целей (например, N крылатых ракет, летящих друг за другом с минимальными временными промежуткам) в поле обзора прицельной головки 7 оптико-электронной системы и объединенное поле обзора объективов 19 тепловизионных каналов 18 головок самонаведения 4 вычислительный блок 8 последовательно определяет центр масс N целей для сопровождения всех целей с помощью двухкоординатного поворотного устройства 2 прицельной головкой 7 оптико-электронной системы и тепловизионными оптико-электронными каналами 18 головок самонаведения 4. Затем вычислительный блок 8 распределяет все цели по узким полям зрения тепловизионных оптико-электронных каналов 18 головок самонаведения 4 по принципу «одна цель - одна ракета», при этом монитор 9 отображает в зоне захвата головки самонаведения 4 ракеты n2 - цель N2, в зоне захвата головки самонаведения 4 ракеты n2 - цель N2 и т.д. с номинальным охватом количества целей, а вычислительный блок 8 готовит оператору для принятия решения циклограмму последовательности пуска ракет на поражение целей.

Если в поле зрения тепловизионного оптико-электронного канала 18 головки самонаведения 4 какой-либо ракеты оказывается две цели, то вычислительный блок 8 или дает команду двухкоординатному поворотному устройству 2 на доворот до тех пор, пока не будет выполнено условие «одна цель - одна ракета», или выдерживает паузу до тех пор, пока одна из движущихся целей сама не уйдет из поля зрения данного тепловизионного оптико-электронного канала 18 в поле зрения свободного тепловизионного оптико-электронного канала 18 до выполнения условия «одна цель - одна ракета». В крайнем случае, вычислительный блок 8 дает команду приводам одной из свободных головок самонаведения 4 на поворот до тех пор, пока в поле зрения ее оптико-электронного канала 18 не появится эта цель.

С момента захвата головки самонаведения 4 ракет самостоятельно отслеживают изменение положения закрепленных за ними целей. После захвата на сопровождение целей оператор осуществляет в определенной последовательности пуск ракет.

После пуска ракет их головки самонаведения 4 автономно осуществляют сопровождение целей, определяют параметры рассогласования и формируют команды управления. При этом формируемое в тепловизионном оптико-электронном канале 18 с помощью объектива 19, микроболометрической матрицы 20 и блока обработки сигнала 21 изображение передается через цифровой коррелятор 23 на блок управления 24 приводами рулевых плоскостей ракеты.

Для защиты от зенитных управляемых ракет с тепловыми головками самонаведения 4 самолеты противника обычно используют отстреливаемые в сторону от летательного аппарата генераторы теплового излучения, т.н. «тепловые ловушки». «Тепловые ловушки» имеют более высокую температуру, чем элементы воздушной цели (двигательная установка, нагревшаяся поверхность фюзеляжа и т.п.) и при определенных условиях могут заставить головку самонаведения 4 зенитной управляемой ракеты перенацелиться на себя.

Для предотвращения перенацеливания головки самонаведения 4 на «тепловую ловушку» после захвата цели на автосопровождение каждый последующий кадр, поступающий с блока обработки сигнала 21, сравнивается цифровым коррелятором 23 с предыдущим, и появляющиеся в кадре новые тепловые объекты из кадра убираются. На последнем этапе полета, когда размер цели становится больше заданной величины, запоминающее устройство 22 последовательно передает в цифровой кореллятор 23 изображения типичных целей, которые цифровым кореллятором 23 сравниваются и, при совпадении одного из них с изображением, поступающим с блока обработки сигнала 21, блок управления 24 приводами рулевых плоскостей ракеты вырабатывает команду, направляющую ракету в наиболее уязвимую часть самолета.

Таким образом, предложенное техническое решение позволяет повысить эффективность зенитного ракетного комплекса как за счет обеспечения возможности осуществления пуска ракет одним зенитным ракетным комплексом сразу по многим целям, так и за счет обеспечения эффективной борьбы с «тепловыми ловушками» самолетов противника.

Следует отметить, что хотя в описании изобретения был представлен и проиллюстрирован только предпочтительный вариант выполнения изобретения, в конструкцию могут быть внесены различные модификации и изменения, не затрагивающие существа и объема изобретения, определяемого формулой изобретения.

Промышленная применимость изобретения определяется тем, что предлагаемый зенитный ракетный комплекс может быть изготовлен в соответствии с предлагаемым описанием и чертежами на основе известных комплектующих изделий при использовании современного технологического оборудования и использован по прямому назначению.

Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
20.02.2014
№216.012.a333

Мира для настройки и определения параметров оптико-электронных систем с матричными фотоприемными устройствами и способ ее использования

Мира содержит расположенные параллельно в ряд идентичные прямоугольные узкие штрихи N, ширина которых b равна расстоянию между ними и определяется, исходя из выражения: b=F/f(m+δ), где F - фокусное расстояние коллиматора; f - фокусное расстояние объектива оптико-электронной системы (ОЭС); m -...
Тип: Изобретение
Номер охранного документа: 0002507494
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a334

Способ контроля параметров оптико-электронных систем в рабочем диапазоне температур

Изобретение относится к области измерений и касается способа контроля параметров оптико-электронных систем (ОЭС). Способ основан на формировании изображения калиброванных источников излучения (мир) в плоскости матричного фотоприемного устройства (МФПУ), воспроизведении получаемой...
Тип: Изобретение
Номер охранного документа: 0002507495
Дата охранного документа: 20.02.2014
10.07.2015
№216.013.5e26

Способ автоматического наведения оружия на подвижную цель

Изобретение относится к области военной техники. Способ автоматического наведения оружия на подвижную цель, при котором осуществляют формирование периодического, с кадровой частотой, изображения поля военных действий, а после обнаружения цели, определения ее дальности, скорости перемещения и...
Тип: Изобретение
Номер охранного документа: 0002555643
Дата охранного документа: 10.07.2015
20.06.2016
№217.015.048b

Способ контроля взаимной пространственной юстировки оптико-электронных систем с матричным фотоприемниками

Способ основан на формировании действительного изображения калиброванных источников излучения с помощью мир. Миру каждого из каналов комбинированной оптико-электронной системы (КОЭС) выполняют в виде последовательности штрихов, создающих высокую пространственную частоту (ВПЧ) в направлении...
Тип: Изобретение
Номер охранного документа: 0002587531
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4c26

Способ герметизации oled и микродисплея oled на кремниевой подложке с помощью стеклообразной пасты

Изобретение относится к способу герметизации микродисплеев на основе органических электролюминесцентных материалов и может быть использовано при изготовлении микродисплеев OLED на кремниевой подложке. Способ основан на использовании стеклообразной пасты при герметизации OLED приборов,...
Тип: Изобретение
Номер охранного документа: 0002594958
Дата охранного документа: 20.08.2016
23.02.2019
№219.016.c693

Оптико-электронная система зенитного ракетного комплекса

Изобретение относится к области систем вооружения, в частности к оптико-электронным системам, обеспечивающим обнаружение, сопровождение, обработку координат различных воздушных, преимущественно низколетящих целей, а также наведение на эти цели средства вооружения зенитных ракетных комплексов...
Тип: Изобретение
Номер охранного документа: 0002433370
Дата охранного документа: 10.11.2011
17.04.2019
№219.017.15a6

Оптико-электронная приставка к оптическому прицелу

Изобретение относится к средствам прицеливания. Технический результат - защита от ударных физических нагрузок хрупких конструктивных элементов оптико-электронной приставки. Оптико-электронная приставка к оптическому прицелу имеет объектив, корпус, установленные в корпусе...
Тип: Изобретение
Номер охранного документа: 0002349859
Дата охранного документа: 20.03.2009
17.04.2019
№219.017.15a7

Оптико-электронный прицел

Изобретение относится к средствам прицеливания, в частности к оптико-электронным прицелам для стрелкового оружия. Прицел включает жестко связанный с оружием корпус, оптическую систему с жестко связанным с корпусом объективом, прицельную сетку, координатно-чувствительный приемник оптического...
Тип: Изобретение
Номер охранного документа: 0002349860
Дата охранного документа: 20.03.2009
09.05.2019
№219.017.4f7a

Способ изготовления металлических тонкостенных изделий с отверстиями

Изобретение относится к области гальванопластики и может быть использовано в микроэлектронике при изготовлении магнитных и немагнитных масок для напыления тонких слоев органики, металлов и диэлектриков органических светоизлучающих диодов. Способ включает изготовление на электроизолирующем...
Тип: Изобретение
Номер охранного документа: 0002406789
Дата охранного документа: 20.12.2010
Показаны записи 1-10 из 16.
27.10.2013
№216.012.7a2e

Электрогидравлическая система привода двустворчатых ворот судоходного шлюза

Изобретение относится к гидроприводам для управления двустворчатыми воротами судоходного шлюза. Электрогидравлическая система привода двустворчатых ворот судоходного шлюза содержит два поршневых силовых гидроцилиндра, каждый из которых кинематически через свой шток соединен с одной створкой...
Тип: Изобретение
Номер охранного документа: 0002496940
Дата охранного документа: 27.10.2013
20.07.2014
№216.012.de4a

Радиоприемное устройство с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой

Изобретение относится к технике радиосвязи. Техническим результатом изобретения является упрощение радиоприемного устройства с автокорреляционным разделением посылок частотно-манипулированного сигнала с непрерывной фазой. В радиоприемное устройство, содержащее последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002522692
Дата охранного документа: 20.07.2014
20.08.2014
№216.012.ea73

Электронно-оптический преобразователь и способ получения видеоизображения

Изобретение относится к электронной технике, а более конкретно к области электронно-оптических преобразователей. Техническим результатом изобретения является повышение чувствительности электронно-оптического преобразователя в условиях низкой освещенности. Электронно-оптический преобразователь,...
Тип: Изобретение
Номер охранного документа: 0002525827
Дата охранного документа: 20.08.2014
20.11.2014
№216.013.0779

Гармонический умножитель частоты

Изобретение относится к области радиоэлектроники и может быть использовано в качестве источника синусоидальных колебаний повышенной частоты и мощности. Достигаемый технический результат - формирование сигнала повышенной мощности. Гармонический умножитель частоты содержит входной...
Тип: Изобретение
Номер охранного документа: 0002533314
Дата охранного документа: 20.11.2014
10.10.2015
№216.013.828e

Многоуровневая отказоустойчивая система автоматического управления оборудованием судоходного гидротехнического сооружения

Изобретение относится к области автоматики, а именно к системам автоматического управления оборудованием (воротами, затворами, предохранительными устройствами и светофорами) судоходного гидротехнического сооружения, например шлюза. Многоуровневая отказоустойчивая система автоматического...
Тип: Изобретение
Номер охранного документа: 0002565019
Дата охранного документа: 10.10.2015
20.04.2016
№216.015.36b2

Удвоитель частоты синусоидального сигнала

Изобретение относится к области радиоэлектроники и может быть использовано в радиопередающих устройствах. Технический результат - увеличение амплитуды тока на нагрузке. Умножитель частоты синусоидального сигнала содержит источник синусоидального сигнала, входной трансформатор, два транзистора,...
Тип: Изобретение
Номер охранного документа: 0002581569
Дата охранного документа: 20.04.2016
12.01.2017
№217.015.5c3d

Фотоприемник на основе структуры с квантовыми ямами

Изобретение относится к фоточувствительным полупроводниковым приборам, работающим в инфракрасной области спектра, и может быть использовано при создании одно- и многоэлементных приемников излучения с фоточувствительными элементами на основе структуры с квантовыми ямами. Фотоприемник на основе...
Тип: Изобретение
Номер охранного документа: 0002589759
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7e60

Двухтактный усилитель мощности

Изобретение относится к радиоэлектронике и может быть использовано в качестве усилителя синусоидальных колебаний высокой мощности. Технический результат - разделение функций ограничения обратного напряжения и регулирования выходной мощности. В усилителе мощности с трансформаторным входом и...
Тип: Изобретение
Номер охранного документа: 0002601182
Дата охранного документа: 27.10.2016
10.05.2018
№218.016.4a13

Зенитный ракетный комплекс

Изобретение относится к мобильным зенитным ракетным комплексам. Зенитный ракетный комплекс (ЗРК) включает транспортное средство, на котором на двухкоординатном поворотном устройстве с приводами по азимуту и по углу места установлен блок из N зенитных ракет с головками самонаведения (ГСН),...
Тип: Изобретение
Номер охранного документа: 0002651533
Дата охранного документа: 19.04.2018
23.02.2019
№219.016.c693

Оптико-электронная система зенитного ракетного комплекса

Изобретение относится к области систем вооружения, в частности к оптико-электронным системам, обеспечивающим обнаружение, сопровождение, обработку координат различных воздушных, преимущественно низколетящих целей, а также наведение на эти цели средства вооружения зенитных ракетных комплексов...
Тип: Изобретение
Номер охранного документа: 0002433370
Дата охранного документа: 10.11.2011
+ добавить свой РИД