×
09.05.2019
219.017.4fdc

Результат интеллектуальной деятельности: СПОСОБЫ И УСТРОЙСТВА ДЛЯ УПРАВЛЕНИЯ ФОКУСОМ ВОЗВЫШЕНИЯ АКУСТИЧЕСКИХ ВОЛН

Вид РИД

Изобретение

№ охранного документа
0002434230
Дата охранного документа
20.11.2011
Аннотация: Акустический зонд (100) включает в себя акустический преобразователь (20), включающий в себя множество элементов акустического преобразователя, скомпонованных в одномерную матрицу; и акустическую линзу (10) с переменным преломлением, соединенную с акустическим преобразователем. Акустическая линза с переменным преломлением имеет, по меньшей мере, пару электродов (150, 160), выполненных с возможностью регулировать фокус акустической линзы с переменным преломлением в ответ на выбранное напряжение, приложенное на электроды. В одном варианте осуществления акустическая линза с переменным преломлением включает в себя полость, первую и вторую жидкие среды (141, 142), размещенные в полости, и пару электродов. Скорость звука акустической волны в первой жидкой среде отличается от скорости звука акустической волны во второй жидкой среде. Первая и вторая жидкие среды являются несмешиваемыми друг с другом, и первая жидкая среда имеет существенно отличающуюся электропроводность от второй жидкой среды. Техническим результатом изобретения является расширение функциональных возможностей. 3 н. и 17 з.п. ф-лы, 4 ил.

Данное изобретение относится к способам формирования акустических изображений, устройствам формирования акустических изображений, а более конкретно, к способам и устройствам для регулировки фокуса возвышения акустических волн с помощью регулируемой жидкой линзы.

Акустические волны (включая, в частности, ультразвуковые волны) используются во многих областях науки и техники, таких как медицинская диагностика, неразрушающий контроль механических деталей и формирование подводных изображений и т.д. Акустические волны предоставляют возможность диагностики и контроля, которые комплементарны оптическим наблюдениям, поскольку акустические волны могут распространяться в средах, которые непрозрачны для электромагнитных волн.

Оборудование для формирования акустических изображений включает в себя оборудование, использующее традиционные одномерные (1D) матрицы акустических преобразователей, и оборудование, использующее полностью дискретные двухмерные (2D) матрицы акустических преобразователей, применяющие технологию формирования микропучков.

В оборудовании, использующем матрицу одномерных акустических преобразователей, элементы акустических преобразователей зачастую компонуются таким образом, чтобы оптимизировать фокусировку в одной плоскости. Это предоставляет возможность фокусировки передаваемой и принимаемой акустической волны давления в осевом (т.е. в направлении распространения) и поперечном измерении (т.е. вдоль направления одномерной матрицы). Фокусировка вне плоскости (возвышения) обычно фиксируется посредством геометрии акустического преобразователя, т.е. высота возвышения элементов акустического преобразователя регулирует естественный фокус матрицы в измерении возвышения. Для большинства медицинских применений фокус вне плоскости (возвышения) может быть изменен только посредством добавления фиксированной линзы спереди от матрицы акустических преобразователей для фокусировки большей части акустической энергии при номинальной глубине фокуса или посредством изменения геометрии элементов по высоте возвышения. К сожалению, этот компромисс зачастую приводит к субоптимальной фокусировке возвышения на различных глубинах. Кроме того, он приводит к невозможности регулировать фокус в направлении возвышения в реальном времени, что, в свою очередь, приводит к другому исследуемому объему как функции от глубины. Результатом является изображение, зашумленное информацией "вне плоскости" или "помехами".

Предложено несколько технологических решений этой проблемы, включая увеличенное количество элементов (1,5-мерных матриц, двухмерных матриц) или материал регулируемой линзы (структуры с реологической задержкой), но каждое из указанных решений не в полной мере нашло применение. Увеличение числа элементов может быть успешным только в том случае, если каждый элемент является индивидуально адресуемым, что значительно повышает стоимость ассоциативно связанного электронного оборудования. Регулируемые задержки, такие как реологический материал, имеют менее чем оптимальное решение вследствие дополнительной необходимости регулировки задержки по отдельности для каждого элемента, при этом также добавляя сложность.

Соответственно, желательно предоставить устройство формирования акустических изображений, которое предоставляет регулировку в реальном времени фокуса возвышения, чтобы сделать возможным предоставление максимальной энергии при изменяемой глубине с заданной фокусировкой возвышения. Дополнительно, желательно предоставить такое устройство, которое позволяет легко переключаться между использованием обычной одномерной матрицы акустических преобразователей и добавлением дополнительной фокусировки "вне плоскости".

В одном аспекте изобретения устройство формирования акустических изображений содержит: акустический зонд, включающий в себя акустический преобразователь, имеющий множество элементов акустического преобразователя, скомпонованных в одномерную матрицу, и акустическую линзу с переменным показателем (переменным преломлением) преломления, соединенную с акустическим преобразователем, причем акустическая линза с переменным показателем преломления имеет, по меньшей мере, пару электродов, выполненных с возможностью регулировки, по меньшей мере, одной характеристики акустической линзы с переменным преломлением в ответ на выбранное напряжение, приложенное на электроды; процессор акустических сигналов, соединенный с акустическим преобразователем; источник регулируемого напряжения, выполненный с возможностью прикладывать выбранные напряжения к паре электродов; и контроллер, выполненный с возможностью управлять источником регулируемого напряжения, чтобы прикладывать выбранные напряжения к паре электродов.

В еще одном другом аспекте изобретения акустический зонд содержит: акустический преобразователь, включающий в себя множество элементов акустического преобразователя, скомпонованных в одномерную матрицу; и акустическую линзу с переменным преломлением, соединенную с акустическим преобразователем, причем акустическая линза с переменным преломлением имеет, по меньшей мере, пару электродов, выполненных с возможностью регулировать, по меньшей мере, одну характеристику акустической линзы с переменным преломлением в ответ на выбранное напряжение, приложенное на электроды.

В еще одном другом аспекте изобретения предусмотрен способ выполнения измерений с использованием акустических волн, содержащий этапы: (1) приложение акустического зонда к пациенту; (2) управление акустической линзой с переменным преломлением акустического зонда для фокусировки в заданном фокусе возвышения; (3) прием из акустических линз с переменным преломлением, в акустическом преобразователе, акустической волны, исходящей обратно из целевой области, соответствующей заданному фокусу возвышения; и (4) вывод из акустического преобразователя электрического сигнала, соответствующего принимаемой акустической волне.

Фиг.1A-B иллюстрируют один вариант осуществления акустического зонда, включающего в себя акустическую линзу с переменным преломлением, соединенную с акустическим преобразователем.

Фиг.2 иллюстрирует блок-схему последовательности операций одного варианта осуществления способа управления фокусом возвышения устройства формирования акустических изображений по фиг.2.

Фиг.3 иллюстрирует блок-схему варианта осуществления другого устройства формирования акустических изображений.

Далее настоящее изобретение описывается более подробно со ссылкой на прилагаемые чертежи, на которых показаны предпочтительные варианты осуществления изобретения. Тем не менее данное изобретение может быть осуществлено в различных формах и не должно рассматриваться как ограниченное вариантами осуществления, изложенными в данном раскрытии. Наоборот, эти варианты осуществления предусмотрены как обучающие примеры изобретения.

Технология жидких линз с переменным фокусом - это решение, первоначально изобретенное для ясной цели предоставления возможности фокусировки света посредством изменения физических границ заполненной жидкостью полости с конкретными показателями преломления (см. Международную Публикацию (PCT) WO2003/069380, которая полностью содержится в данном документе в качестве ссылки, как если бы была полностью изложена здесь). Процесс, известный как электросмачивание, при котором жидкость в резонаторе перемещается за счет приложения напряжения на проводящих электродах, осуществляет перемещение поверхности жидкости. Это изменение топологии поверхности позволяет свету преломляться таким образом, чтобы изменять траекторию, тем самым фокусируя свет.

Между тем ультразвуковая волна распространяется в жидкой среде. Фактически, человеческое тело зачастую рассматривается как жидкость, не допускающая поддержку высокочастотных акустических волн, отличных от волн сжатия. В этом смысле волны чувствительны к искажению за счет разностей в акустической скорости распространения в массе тканей, а также за счет резких изменений скорости звука на поверхности раздела. Это свойство используется в PCT-публикации WO2005/122139, которая полностью содержится в данном документе в качестве ссылки, как если бы была полностью изложена здесь. PCT-публикация WO2005/122139 раскрывает применение жидкой линзы с переменным фокусом с акустической скоростью звука, отличающейся от массы тканей, контактирующей с линзой, чтобы сфокусировать ультразвук в и из акустического преобразователя. Тем не менее PCT-публикация WO2005/122139 не раскрывает и не изучает применение технологии жидких линз с переменным фокусом к одномерным матрицам акустических преобразователей для управления фокусом возвышения акустических волн.

Ниже раскрыты один или более вариантов осуществления акустического устройства, включающего в себя: акустический генератор, генерирующий акустические волны; акустическую поверхность раздела, которая допускает переменную рефракцию акустических волн; и средство направления акустических волн из акустического генератора на акустическую поверхность раздела. Преимущественно, акустическая поверхность раздела включает в себя границу между двумя отдельными жидкими средами, в которых акустические волны имеют различные скорости звука, и средство применения силы непосредственно, по меньшей мере, к части одной из жидких сред с тем, чтобы выборочно вызвать смещение, по меньшей мере, одной части границы.

Фиг.1A-B иллюстрируют один вариант осуществления акустического зонда 100, содержащего акустическую линзу 10 с переменным преломлением, соединенную с акустическим преобразователем 20. Преимущественно, акустическая линза 10 с переменным преломлением выполнена с возможностью изменения фокуса возвышения акустической волны вдоль оси распространения ("фокус"), а также перпендикулярно этой плоскости ("отклонение"), как подробнее описано ниже. Акустическая линза 10 с переменным преломлением включает в себя корпус 110, соединительный элемент 120, первую и вторую жидкие среды 141 и 142, первый электрод 150 и, по меньшей мере, один второй электрод 160a. Корпус 110 может иметь, к примеру, цилиндрическую форму. Преимущественно, верхний конец и нижний конец корпуса 110 являются практически акустически прозрачными, тогда как акустические волны не проникают через боковую стенку(и) корпуса 110. Акустический преобразователь 20 соединен с дном корпуса 110, преимущественно, посредством одного или более акустических согласующих слоев 130.

В одном варианте осуществления акустический зонд 100 приспособлен так, чтобы работать в режиме передачи и режиме приема. В таком случае, в режиме передачи акустический преобразователь 20 преобразует электрические сигналы, вводимые в него, в акустические волны, которые он выводит. В режиме приема акустический преобразователь 20 преобразует акустические волны, которые он принимает, в электрические сигналы, которые он выводит. Акустический преобразователь 20 является хорошо известным типом преобразователя в области акустических волн. Преимущественно, акустический преобразователь 20 содержит одномерную матрицу элементов акустического преобразователя.

В альтернативном варианте осуществления акустический зонд 100 вместо этого может быть приспособлен так, чтобы работать только в режиме приема. В таком случае передающий преобразователь предусмотрен отдельно.

Преимущественно, соединительный элемент 120 предусмотрен на одном конце корпуса 110. Соединительный элемент 120 приспособлен для переноса к контактной области при прижатии к телу, к примеру телу человека. Преимущественно, соединительный элемент 120 содержит гибкий герметичный карман, заполненный соединяющим твердым веществом, таким как майларовая пленка (т.е. акустическим окном), или пластмассовой мембраной практически с одинаковым акустическим импедансом для тела.

Корпус 110 заключает в себе герметичную полость, имеющую объем V, в которой предусмотрена первая и вторая жидкие среды 141 и 142. В одном варианте осуществления, например, объем V полости в корпусе 110 составляет примерно 0,8 см в диаметре и примерно 1 см по высоте, т.е. вдоль оси корпуса 110.

Преимущественно, скорости звука в первой и второй жидкой среде 141 и 142 отличаются друг от друга (т.е. акустические волны распространяются с другой скоростью в жидкой среде 141, нежели они распространяются в жидкой среде 142). Так же первая и вторая жидкие среды 141 и 142 являются несмешиваемыми друг с другом. Таким образом, они все остаются в отдельных жидких фазах в полости. Разделение между первой и второй жидкой средой 141 и 142 - это контактная поверхность, или мениск, который задает границу между первой и второй жидкой средой 141 и 142 без какой-либо твердой части. Также преимущественно, одна из двух жидких сред 141, 142 является электропроводящей, а другая жидкая среда является практически неэлектропроводящей, или электроизоляционной.

В одном варианте осуществления первая жидкая среда 141 состоит главным образом из воды. Например, это может быть солевой раствор с ионным содержимым, достаточно высоким для того, чтобы иметь электрически полярную характеристику или быть электропроводящим. В этом случае первая жидкая среда 141 может содержать ионы калия и хлора, оба, например, с концентрацией 1 моль/л-1. Альтернативно, это может быть смесь воды и этилового спирта с существенной проводимостью вследствие наличия ионов, таких как сода или калий (например, с концентрациями 0,1 моль/л-1). Вторая жидкая среда 142, например, может содержать силиконовое масло, которое нечувствительно к электрическим полям. Преимущественно, скорость звука в первой жидкой среде 141 может быть 1480 м/с, тогда как скорость звука во второй жидкой среде 142 может быть 1050 м/с.

Преимущественно, первый электрод 150 предусмотрен в корпусе 110 так, чтобы контактировать с одной из двух жидких сред 141, 142, которая является электропроводящей. В примере по фиг.1A-B предполагается, что жидкая среда 141 является электропроводящей жидкой средой, а жидкая среда 142 является практически неэлектропроводящей жидкой средой. Тем не менее следует понимать, что жидкая среда 141 может быть практически неэлектропроводящей жидкой средой, а жидкая среда 142 может быть электропроводящей жидкой средой. В таком случае первый электрод 150 должен быть размещен так, чтобы контактировать с жидкой средой 142. Так же в таком случае вогнутость контактного мениска, как показано на фиг.1A-B, должна быть изменена в обратную сторону.

Между тем, второй электрод 160a предусмотрен вдоль поперечной (боковой) стенки корпуса 110. Необязательно, два или более вторых электрода 160a, 160b и т.д. предусмотрены вдоль поперечной (боковой) стенки (или стенок) корпуса 110. Электроды 150 и 160a подключены к двум выводам источника регулируемого напряжения (не показан на фиг.1A-B).

При функционировании акустическая линза 10 с переменным преломлением работает с акустическим преобразователем 20 следующим образом. В примерном варианте осуществления по фиг.1A, когда напряжение, прикладываемое между электродами 150 и 160 посредством источника регулируемого напряжения, равно нулю, то контактная поверхность между первой и второй жидкими средами 141 и 142 - это мениск M1. Известным образом форма мениска определяется свойствами поверхности внутренней стороны продольной стенки корпуса 110. Его форма в таком случае приблизительно является частью сферы, особенно для случая практически равных плотностей обеих из первой и второй жидкой среды 141 и 142. Поскольку акустическая волна W имеет различные скорости распространения в первой и второй жидкой среде 141 и 142, объем V, заполненный первой и второй жидкой средой 141 и 142, выступает в качестве конвергирующей линзы для акустической волны W. Таким образом, дивергенция акустической волны W, поступающей на зонд 100, уменьшается при пересечении контактной поверхности между первой и второй жидкими средами 141 и 142. Фокусное расстояние акустической линзы 10 с переменным преломлением - это расстояние от акустического преобразователя 20 до исходной точки акустической волны, так что акустическая волна формируется плоской посредством акустической линзы 10 с переменным преломлением перед падением на акустический преобразователь 20.

Когда напряжение, прикладываемое между электродами 150 и 160 посредством источника переменного напряжения, задается равным положительному или отрицательному значению, затем форма мениска изменяется вследствие электрического поля между электродами 150 и 160. В частности, прикладывается сила к части первой жидкой среды 141 рядом с контактной поверхностью между первой и второй жидкими средами 141 и 142. Вследствие полярной характеристики первой жидкой среды 141 она стремится переместиться ближе к электроду 160, так что контактная поверхность между первой и второй жидкой средой 141 и 142 выравнивается, как проиллюстрировано в примерном варианте осуществления по фиг.1B. На фиг.1B M2 обозначает форму контактной поверхности, когда напряжение имеет ненулевое значение. Такое электрически регулируемое изменение формы контактной поверхности называется электросмачиванием. В случае, если первая жидкая среда 141 является электропроводящей, изменение формы контактной поверхности между первой и второй жидкой средой 141 и 142, когда применяется напряжение, является таким же, как описано ранее. Вследствие выравнивания контактной поверхности длина фокуса акустической линзы 10 с переменным преломлением увеличивается, когда напряжение не равно нулю.

Преимущественно, в примере по фиг.1A-B, в случае, когда жидкая среда 141 состоит главным образом из воды, то, по меньшей мере, нижняя стенка корпуса 110 покрывается гидрофильным покрытием 170. Разумеется, в другом примере, когда жидкая среда 142 состоит главным образом из воды, то вместо этого верхняя стенка корпуса 110 может быть покрыта гидрофильным покрытием 170.

Между тем PCT-публикация WO2004051323, которая полностью раскрыта в данном документе в качестве ссылки, как если бы она полностью была изложена здесь, предоставляет подробное описание наклона мениска жидкой линзы с переменным преломлением.

Преимущественно, как подробнее описано ниже, комбинация акустической линзы 10 с переменным преломлением, соединенной с акустическим преобразователем 20, может заменить традиционную одномерную матрицу преобразователей, с дополнительным преимуществом в виде регулирования в реальном времени фокуса возвышения, чтобы дать возможность предоставления максимальной энергии при изменяемой глубине с заданной фокусировкой возвышения.

Фиг.2 - это блок-схема варианта осуществления устройства 200 формирования акустических изображений, использующего акустический зонд, включающий в себя акустическую линзу с переменным преломлением, соединенную с акустическим преобразователем для того, чтобы предоставлять регулировку фокуса возвышения в реальном времени. Устройство 200 формирования акустических изображений включает в себя процессор/контроллер 210, источник 220 излучения сигналов, переключатель 230 передачи/приема, акустический зонд 240, фильтр 250, средство 260 усиления/ослабления, средство 270 обработки акустических сигналов, контроллер 280 фокуса возвышения и источник 290 регулируемого напряжения. Между тем акустический зонд 240 включает в себя акустическую линзу 242 с переменным преломлением, соединенную с акустическим преобразователем 244.

Акустический зонд 240 может быть реализован так, как акустический зонд 100, описанный выше в связи с фиг.1. В таком случае, преимущественно, две жидкие среды 141, 142 акустической линзы 242 с переменным преломлением имеют согласованные импедансы, но отличающиеся скорости звука. Это должно предоставлять максимальное прямое распространение акустической волны, при этом обеспечивая управление над направлением пучка. Преимущественно, жидкие среды 141, 142 имеют скорость звука, выбранную так, чтобы максимизировать гибкость фокусировки и преломления акустической волны.

Преимущественно, элемент 244 акустического преобразователя представляет собой одномерную матрицу элементов акустического преобразователя.

При функционировании устройство 200 формирования акустических изображений работает следующим образом.

Контроллер 280 фокуса возвышения регулирует напряжение, прикладываемое к электродам акустической линзы 242 с переменным преломлением, посредством источника 290 регулируемого напряжения. Как пояснено выше, это, в свою очередь, регулирует "фокусное расстояние" акустической линзы 242 с переменным преломлением.

Когда поверхность мениска, заданная посредством двух жидких сред в акустической линзе 242 с переменным преломлением, достигает надлежащей топологии, то процессор/контроллер 210 управляет источником 220 излучения (передачи) сигналов так, чтобы сформировать заданный электрический сигнал, который должен быть применен к акустическому преобразователю 244, чтобы сформировать заданную акустическую волну. В одном случае источник 220 излучения сигналов может управляться так, чтобы формировать кратковременные (широкополосные) сигналы, работающие в M-режиме, возможно, короткие тональные посылки, чтобы предоставить доплеровский эффект пульсовой волны или другие ассоциативно связанные сигналы для других способов формирования изображений. Типичным применением может быть то, чтобы формировать изображение плоскости с фиксированным фокусом возвышения, отрегулированным до зоны клинического исследования. Другим применением может быть то, чтобы формировать изображение плоскости с несколькими фокусами, регулируя фокус возвышения так, чтобы максимизировать энергию, предоставляемую в зону осевого фокуса. Акустическим сигналом может быть разрешенный во временной области сигнал, такой как обычный эхо-сигнал, M-режим или доплеровский эффект PW, либо даже неразрешенный во временной области сигнал, такой как доплеровский эффект CW.

В варианте осуществления по фиг.2 акустический зонд 240 приспособлен так, чтобы работать в режиме передачи и режиме приема. Как пояснено выше, в альтернативном варианте осуществления акустический зонд 240 вместо этого может быть приспособлен так, чтобы работать в режиме только приема. В таком случае передающий преобразователь предусмотрен отдельно, и переключатель 230 передачи/приема может быть опущен.

Фиг.3 иллюстрирует блок-схему последовательности операций одного варианта осуществления способа 300 управления фокусом возвышения устройства 200 формирования акустических изображений по фиг.2.

На первом этапе 305 акустический зонд 240 подсоединяется к пациенту.

Далее на этапе 310 контроллер 280 фокуса возвышения регулирует напряжение, применяемое к электродам акустической линзы 242 с переменным преломлением, посредством источника 290 регулируемого напряжения для фокусировки на целевом возвышении.

Затем на этапе 315 процессор/контроллер 210 управляет источником 220 передаваемых сигналов и переключателем 230 передачи/приема так, чтобы применять требуемый электрический сигнал(ы) к акустическому преобразователю 244. Акустическая линза 242 с переменным преломлением работает вместе с акустическим преобразователем 244 так, чтобы сформировать акустическую волну и сфокусировать акустическую волну в целевой области пациента, включая целевое возвышение.

После этого на этапе 320 акустическая линза 242 с переменным преломлением работает вместе с акустическим преобразователем 244 так, чтобы принять обратно акустическую волну из целевой зоны пациента. В это время процессор/контроллер 210 управляет переключателем 230 передачи/приема так, чтобы подключить акустический преобразователь 244 к фильтру 250 для вывода электрического сигнала(ов) из акустического преобразователя 244 в фильтр 350.

Далее на этапе 330 фильтр 250, средство 260 усиления/ослабления и средство 270 обработки акустических сигналов работают вместе так, чтобы привести к заданным параметрам электрический сигнал из акустического преобразователя 244 и сформировать из него принимаемые акустические данные.

Затем на этапе 340 принимаемые акустические данные сохраняются в запоминающем устройстве (не показано) средства 270 обработки акустических сигналов устройства 200 формирования акустических изображений.

После этого на этапе 345 процессор/контроллер 210 определяет то, следует или нет ему сфокусироваться в другой плоскости возвышения. Если да, то на этапе 350 выбирается новая плоскость возвышения, и процесс повторяется на этапе 310. Если нет, то на этапе 355 средство 270 обработки акустических сигналов обрабатывает принимаемые акустические данные (возможно, вместе с процессором/контроллером 210), чтобы сформировать и вывести изображение.

В завершение, на этапе 360 устройство 200 формирования акустических изображений выводит изображение.

В общем, способ 300 может быть приспособлен так, чтобы приводить измерения, в которых акустическая волна - это разрешенный во временной области сигнал, такой как обычный эхо-сигнал, M-режим или доплеровский эффект PW, либо даже неразрешенный во временной области сигнал, такой как доплеровский эффект CW.

Хотя предпочтительные варианты осуществления раскрыты в данном раскрытии, возможно множество вариантов осуществления, которые находятся в рамках концепции и области применения изобретения. Эти варианты осуществления должны стать очевидными специалистам в данной области техники после изучения подробного описания, чертежей и формулы изобретения в данном документе. Следовательно, изобретение не должно быть ограничено ничем иным, кроме концепции и объема прилагаемой формулы изобретения.

Источник поступления информации: Роспатент

Показаны записи 81-90 из 99.
27.08.2016
№216.015.5032

Светоизлучающее устройство с органическим люминофором

Изобретение относится к химической промышленности и светотехнике и может быть использовано при изготовлении систем освещения. Светоизлучающее устройство содержит источник света для излучения света с первой длиной волны и элемент, преобразующий свет с первой длиной волны в свет со второй длиной...
Тип: Изобретение
Номер охранного документа: 0002595698
Дата охранного документа: 27.08.2016
20.03.2019
№219.016.e875

Матрица детекторов излучения

Изобретение относится к матрицам детекторов рентгеновского излучения для использования в системах компьютерной томографии. Технический результат - улучшение качества изображения, упрощение конструкции детектора. Модуль (22) детекторов излучения, особенно хорошо пригодный для использования в...
Тип: Изобретение
Номер охранного документа: 0002408110
Дата охранного документа: 27.12.2010
29.03.2019
№219.016.f6ce

Устройства и способы диагностики с использованием ионных зондов, проявляющих эффект фотонной лавины

Изобретение относится к устройствам и способам с повышенной чувствительностью при проведении диагностики, например оптической биопсии. Способ определения области, представляющей интерес, включает предоставление одного или более ионных зондов, пригодных для проявления лавинного эффекта со...
Тип: Изобретение
Номер охранного документа: 0002435516
Дата охранного документа: 10.12.2011
29.03.2019
№219.016.f716

Хирургическая система, управляемая по изображениям

Изобретение относится к медицинской технике, а именно к системам управления хирургической операцией. Система содержит систему контроля положения для определения положения хирургического инструмента в операционном поле пациента, содержащую приемное средство для съема сигналов, блок памяти для...
Тип: Изобретение
Номер охранного документа: 0002434600
Дата охранного документа: 27.11.2011
10.04.2019
№219.017.09ff

Система и способ для объединения ультразвуковых изображений в реальном времени с ранее полученными медицинскими изображениями

Изобретение относится к средствам магнитно-резонансного сканирования и визуализации. Техническим результатом является повышение точности и скорости проведения магнитно-резонансного исследования. В способе преобразуют координатную систему ультразвукового (УЗ) изображения в реальном времени в...
Тип: Изобретение
Номер охранного документа: 0002468436
Дата охранного документа: 27.11.2012
27.04.2019
№219.017.3d81

Распределенные реестры пациентов для объединенных федеративных pacs

Группа изобретений относится к совместному использованию медицинской информации между местоположениями объединенной федеративной системы здравоохранения. Предложена система для реализации способа, содержащая: множество устройств хранения локальных изображений, хранящих обследования пациентов,...
Тип: Изобретение
Номер охранного документа: 0002686295
Дата охранного документа: 24.04.2019
29.04.2019
№219.017.45c3

Способ нахождения ad-нос маршрута вектора расстояния по требованию, имеющего, по меньшей мере, минимальный набор доступных ресурсов в распределенной сети беспроводной связи

Изобретение относится к системам связи. Заявлен способ нахождения маршрута в сети беспроводной связи, содержащей множество устройств (100), для передачи данных с устройства (110А) источника на устройство (110D) пункта назначения посредством ретрансляции с многими переприемами включает в себя...
Тип: Изобретение
Номер охранного документа: 0002449483
Дата охранного документа: 27.04.2012
29.04.2019
№219.017.4637

Способ резервирования ресурсов с гарантией максимальной задержки для многосегментной передачи в сети беспроводной связи с распределенным доступом

Изобретение относится к вычислительной технике, а именно к сетевой беспроводной связи. Техническим результатом является высокая скорость передачи данных и спектральная эффективность. Способ резервирования Х слотов для передачи данных из исходного устройства в целевое устройство посредством...
Тип: Изобретение
Номер охранного документа: 0002442288
Дата охранного документа: 10.02.2012
09.05.2019
№219.017.4efb

Локальная позитронная эмиссионная томография

Изобретение относится к области позитронной визуализации и реконструкции данных, собираемых в процессе позитронной эмиссионной томографии (PET). Техническим результатом выступает создание устройства и способа для позитронной эмиссионной томографии, собирающей данные проекций, вдоль линий...
Тип: Изобретение
Номер охранного документа: 0002471204
Дата охранного документа: 27.12.2012
09.05.2019
№219.017.4f06

Ретроспективная сортировка 4d ст по фазам дыхания на основании геометрического анализа опорных точек формирования изображения

Изобретение относится к медицинской диагностике. Устройство сортировки изображения содержит маркер дыхания, содержащий распознаваемый участок, выполненный с возможностью пересечения изображений, полученных в разных позициях вдоль оси сканирования сканера формирования изображения, и...
Тип: Изобретение
Номер охранного документа: 0002454966
Дата охранного документа: 10.07.2012
Показаны записи 1-1 из 1.
20.09.2013
№216.012.6a61

Способ и устройство для отслеживания положения терапевтического ультразвукового преобразователя

Изобретение относится к медицинской технике, а именно к системам для отслеживания положения терапевтического ультразвукового преобразователя. Система содержит первое множество отслеживающих элементов, расположенных в первом положении с первой ориентацией относительно друг друга и поверхности...
Тип: Изобретение
Номер охранного документа: 0002492884
Дата охранного документа: 20.09.2013
+ добавить свой РИД