×
09.05.2019
219.017.4fca

Результат интеллектуальной деятельности: РАБОЧАЯ СМЕСЬ ДЛЯ ЙОДНОГО ФОТОДИССОЦИОННОГО ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Рабочая смесь для йодного фотодиссоционного лазера включает перфторйодид и инжектор дополнительных радикалов CF. В качестве инжектора радикалов CF рабочая смесь содержит газообразный перфторуксусный ангидрид - (CFCO)О при парциальном давлении 0.05-0.5 от парциального давления перфторйодида. Дополнительно рабочая смесь может содержать инертный буферный газ. Технический результат заключается в обеспечении малой расходимости и хорошей однородности лазерного пучка с увеличением энергии на выходе, а также в снижении загрязнения рабочего объема твердыми продуктами фотолиза. 1 з.п. ф-лы, 1 ил.

Изобретение относится к квантовой электронике и может быть использовано при создании йодных фотодиссоционных лазеров с оптической накачкой.

К таким лазерам относится йодный фотодиссоционный лазер, в котором в качестве рабочего вещества используются различные перфторйодиды (Кормер С.Б. "Фотодиссоционные лазеры для управляемого термоядерного синтеза", Изв. АН СССР, Сер. физ, т.44, №10, 1980, с.2002…2017).

При эксплуатации этого лазера встают вопросы поднятия энергетики на выходе и воспроизводимости этой энергии. Йодный фотодиссоционный лазер работает следующим образом.

При инициировании рабочей среды оптическим излучением происходит фотолиз йодосодержащего вещества, который может быть представлен в следующем виде:

где RI - перфторйодид, hνн - квант оптической накачки, I* - йод в возбужденном состоянии (I(2P1/2)), R - радикал CF3, C2F5, C3F7 и др. Генерация происходит по схеме:

где hvг - рабочий квант излучения лазера (λ=1.315 мкм), I - атом йода в основном состоянии (I(2Р3/2)), но на работу йодного лазера влияют и вторичные химические реакции, такие как рекомбинация рабочего вещества

т.е. атомы не накапливаются на нижнем лазерном уровне, в результате чего образуются молекулы исходного рабочего йодида, например, C3F7I, CF3I и т.д., которые вновь фотодиссоциируют по схеме (1). Реакция рекомбинации играет определяющую роль в кинетике йодных фотодиссоционных лазеров.

В рабочей среде протекают и "вредные" процессы, такие как процессы тушения возбужденных атомов йода как исходными продуктами, так и возникающими в процессе фотолиза

сопровождающиеся наработкой молекулярного йода (I2) и загрязнением стеклянных поверхностей, а также процесс димеризации, снижающий роль реакции (3), т.е. образующийся в процессе фотолиза из радикалов димер (R2), уводит из процесса необходимые для рекомбинации радикалы R:

Для решения вопроса очистки, например, использовались дорогостоящие установки замкнутого цикла по очищению рабочей смеси от продуктов фотолиза и, в частности, от молекулярного йода, являющегося, кроме того, сильнейшим тушителем возбужденного йода. Применение таких установок не решило радикально стоящие вопросы (Борович Б.Л., Зуев B.C., Катулин В.А. и др. "Сильноточные излучающие разряды и газовые лазеры с оптической накачкой". - М.: Итоги науки и техники, сер. Радиотехника, т.15, 1978).

Известна рабочая смесь для йодного фотодиссоционного лазера, применение которой частично решает вопрос поднятия энергетики йодного фотодиссоционного лазера (Srinivasan R., Lankard J.R. J. Phys. Chem. "The Role of CF3-Radicals in the Photochemical Iodine Laser", v.78, №10, 1974, р.951). Рабочая смесь содержит основное рабочее вещество перфторйодид CF3I и в качестве инжектора радикалов гексафлюороазометан CF3NNCF3. Находясь в рабочем объеме лазера и подвергаясь воздействию световой накачки, добавка гексафлюороазометан CF3NNCF3 фотодиссоциирует по следующей схеме

создавая избыток радикалов CF3, которые рекомбинируют по схеме (3) в рабочий йодид CF3I.

Недостатком известной рабочей смеси является нерешенность проблемы загрязнения рабочего объема продуктами фотолиза, что отрицательно сказывается на энергетическом выходе лазера.

Задачей, решаемой настоящим изобретением, является повышение энергетического выхода лазера и снижение загрязненности рабочего объема твердыми продуктами фотолиза.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:

- увеличение энергии на выходе лазера;

- обеспечение малой расходимости и хорошей однородности лазерного пучка с увеличением энергии на выходе: эффективный градиент показателя преломления рабочей среды при максимальной накачке составляет dn/dx~8·10-7 см-1 и при L=100 см расходимость составляет ~8·10-5 рад.

- снижение загрязнения рабочего объема твердыми продуктами фотолиза.

Для решения поставленной задачи и достижения технического результата рабочая смесь для йодного фотодиссоционного лазера, включающая газообразный перфторйодид и инжектор дополнительных радикалов CF3, согласно изобретению в качестве инжектора радикалов CF3 содержит газообразный перфторуксусный ангидрид (CF3CO)2О при парциальном давлении 0,05-0,5 от парциального давления перфторйодида. Рабочая смесь может дополнительно содержать буферный газ.

В качестве йодосодержащего вещества могут использоваться различные перфторйодиды: i-C3F7I, n-C3F7I, t-C4F9I, C2F5I, CF3I и т.д. В качестве буферного газа выбираются химически инертные газы (Не, Ne, Ar, Kr, Xe, N2, SF6 и др.).

Под воздействием излучения накачки фотодиссоциация с перфторуксусным ангидридом протекает по следующей схеме (Кузнецова С.В., Маслов А.И. "Исследование реакций радикала CF3 с атомарным и молекулярным хлором". Химия высоких энергий, т.13, №5, 1979, с.448):

т.е. в результате фотодиссоциации в рабочей смеси образуется избыток радикалов (CF3) и буферные газы (CO2 и СО). Появление в рабочей среде химически активных молекул СО может способствовать переводу нелетучих загрязняющих продуктов фотолиза в летучие и тем самым способствовать очищению стеклянных поверхностей рабочего объема. Далее, что очень важно, в рабочем объеме с вновь образовавшимися радикалами и йодом (в основном состоянии) по схеме (3) происходит процесс рекомбинации:

и получившееся новое рабочее вещество - перфторйодид CF3I фотодиссоциирует по схеме (1), как и основной рабочий перфторйодид, использующийся в конкретном случае, такой как, например, i-C3F7I, n-C3F7I, t-C4F9I и т.д.

Кроме увеличения энергии на выходе лазера, экспериментально установлено, что предлагаемый перфторуксусный ангидрид удовлетворяет требованиям к рабочей смеси йодного лазера по времени появления оптических неоднородностей в рабочем объеме.

Предлагаемая рабочая смесь имеет оптимум по давлению составляющих компонентов. Сам перфторуксусный ангидрид является хоть и слабым (по сравнению с молекулярным йодом I2), но тушителем возбужденного йода (I(2Р1/2)). С повышением давления ангидрида процесс рекомбинации (3) будет конкурировать с процессами тушения (4, 5). Кроме того, из-за совпадения полос поглощения с основным рабочим веществом, ангидрид будет как бы экранировать основное рабочее вещество. Этим и определяется диапазон используемых давлений.

На чертеже показаны экспериментальные данные по отработке рабочих смесей для йодного фотодиссоционного лазера, а именно приведена зависимость лазерной энергии от парциального давления перфторуксусного ангидрида (CF3CO)2O:

зависимость 1-30 Торр i-C3F7I+705 Торр SF6;

зависимость 2-40 Торр i-C3F7I+705 Торр SF6.

Для определения динамического диапазона применения перфторуксусного ангидрида было приготовлено некоторое количество составов рабочих смесей, два из них приведены на чертеже. Первоначально готовилась рабочая смесь: 30 Торр i-C3F7I+705 Торр SF6 и далее к этой (основной) смеси добавлялся порциями перфторуксусный ангидрид. В результате срабатывания лазером получена экспериментальная зависимость (кривая 1). Первоначально заметен рост выходной лазерной энергии, а затем спад. Максимум выходной энергии наблюдается при ~8 Торр перфторуксусного ангидрида, а при 15 Торр рост прекращается, что составляет 0,5 от давления рабочего перфторйодида. Во втором случае (кривая 2) первоначально готовилась рабочая смесь: 40 Торр i-C3F7I+705 Торр SF6. Максимум выходной энергии наблюдается при ~10 Торр перфторуксусного ангидрида, а при 20 Торр рост прекращался, что также составляет 0,5 от давления рабочего перфторйодида. Таким образом, была зафиксирована динамическая пропорция основного рабочего вещества и перфторуксусного ангидрида, при которой регистрируется рост лазерной энергии высокого качества. В результате вариаций парциальными давлениями газов незначительный прирост выходной энергии компенсировался достижением высокого качества лазерной энергии, т.е. малой расходимостью и хорошей однородностью лазерного пучка. Направленность излучения лазера определяется степенью однородности показателя преломления рабочей среды в зоне генерации (усиления). В частности, направленность (расходимость) излучения в усилительном режиме определяется выражением

где dn/dx - поперечный градиент показателя преломления рабочей среды, L - освещаемая лампой накачки длина кюветы йодного лазера. В нашем случае эффективный градиент показателя преломления рабочей среды при максимальной накачке составлял dn/dx~8·10-7 см-1 и при L=100 см расходимость составляла ~8-10-5 рад.

По результатам экспериментов окончательно была определена рабочая смесь йодного фотодисоционного лазера, которая содержит йодосодержащее вещество, инжектор радикалов и буферный газ в качестве разбавителя при следующих соотношениях парциальных давлений компонентов:

Йодосодержащее вещество 1
Инжектор радикалов 0.05-0.5
Буферный газ 3-200

при этом полное давление рабочей среды йодного лазера может составлять 100-1000 Торр.

Источник поступления информации: Роспатент

Показаны записи 191-200 из 255.
13.01.2017
№217.015.731c

Опорно-несущая конструкция

Изобретение относится к точному машиностроению и приборостроению. Опорно-несущая конструкция содержит опорную поверхность, на которой закреплены, по крайней мере, по одной опоре неподвижной, ограниченной и свободной. Опоры состоят из основания, фланца, двух вставок, и шарика, размещенного между...
Тип: Изобретение
Номер охранного документа: 0002598108
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.73e7

Детонирующий шнур

Изобретение относится к средствам инициирования и может быть использовано в разработке боеприпасов военного назначения, взрывных устройств для применения в хозяйственной деятельности, научно-исследовательской деятельности. Детонирующий шнур (ДШ) состоит из сердцевины из взрывчатого вещества...
Тип: Изобретение
Номер охранного документа: 0002597924
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.743b

Импульсный источник света

Изобретение относится к импульсным источникам света и может быть использовано при осуществлении подсветки для скоростной кинорегистрации в полигонных условиях. Устройство содержит фотосмесь, инициирующее устройство. Фотосмесь размещена с возможностью взаимодействия с метаемым диском-ударником...
Тип: Изобретение
Номер охранного документа: 0002597886
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7591

Твэл реактора на быстрых нейтронах, элемент дистанционирования твэла и способ (варианты) изготовления элемента

Изобретение относится к ядерной технике и может быть использовано при изготовлении тепловыделяющих элементов и тепловыделяющих сборок реакторов на быстрых нейтронах с жидкометаллическим теплоносителем. Твэл включает ядерное топливо, размещенное в герметичном контейнере в виде тонкостенной...
Тип: Изобретение
Номер охранного документа: 0002598542
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.79d9

Способ импульсного освещения процессов

Изобретение относится к способам осуществления подсветки для скоростной кинорегистрации в полигонных условиях. Способ включает одновременное инициирование горения и метание фотосмеси. Метание фотосмеси производят при помощи магнитоимпульсного метательного устройства, начало работы которого...
Тип: Изобретение
Номер охранного документа: 0002599146
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.8258

Способ структурирования зашумленных оптических сигналов

Изобретение относится к приемникам оптических сигналов и может быть использовано для восстановления кодовой комбинации из зашумленных оптических сигналов. Способ восстановления кодовой комбинации из зашумленных цифровых оптических сигналов, заключающийся в их приеме, преобразовании в...
Тип: Изобретение
Номер охранного документа: 0002601438
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82e9

Устройство для инициирования зарядов взрывчатых веществ

Изобретение относится к инициированию зарядов взрывчатых веществ (ВВ). Устройство содержит инициируемое светочувствительное ВВ, источник света с источником питания, при этом светочувствительное ВВ соединено с источником света оптическим жгутом, а в качестве источника света использован лазерный...
Тип: Изобретение
Номер охранного документа: 0002601845
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82f9

Способ изготовления деталей из слюды методом лазерной резки

Изобретение относится к способу изготовления деталей из слюды методом лазерной резки. Подготавливают и жестко фиксируют плоскую заготовку из слюды на неподвижном основании, выполненном составным из съемной металлической сетки, опирающейся на прямоугольный выступ, выполненный по периметру окна в...
Тип: Изобретение
Номер охранного документа: 0002601362
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.834d

Способ ввода-вывода излучения через боковую поверхность изогнутого оптического волокна

Изобретение относится к способам обнаружения активных волокон, направления и длины волны передаваемого сигнала и ввода-вывода оптического излучения через боковую поверхность оптического волокна (ОВ) с помощью изгиба и может быть использовано для ввода (вывода) оптического сигнала в ОВ в...
Тип: Изобретение
Номер охранного документа: 0002601385
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.86c3

Термостойкий пластичный взрывчатый состав

Использование относится к пластичным взрывчатым составам (ВС) и может быть использовано в термостойких системах инициирования и детонационных разводках с малыми сечениями каналов. Термостойкий пластичный ВС содержит бризантное взрывчатое вещество (ВВ) - бензотрифуроксан (БТФ), полимерное...
Тип: Изобретение
Номер охранного документа: 0002603676
Дата охранного документа: 27.11.2016
Показаны записи 1-2 из 2.
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
10.04.2019
№219.017.0845

Устройство для заполнения емкости газом высокой чистоты

Изобретение относится к устройствам для заполнения емкостей газами высокой чистоты. Устройство для заполнения емкости газом высокой чистоты содержит систему напуска газа, снабженную заправочным трубопроводом с разъемом для емкости и коммутационной арматурой. Устройство характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002438946
Дата охранного документа: 10.01.2012
+ добавить свой РИД