×
09.05.2019
219.017.4fca

Результат интеллектуальной деятельности: РАБОЧАЯ СМЕСЬ ДЛЯ ЙОДНОГО ФОТОДИССОЦИОННОГО ЛАЗЕРА

Вид РИД

Изобретение

Аннотация: Рабочая смесь для йодного фотодиссоционного лазера включает перфторйодид и инжектор дополнительных радикалов CF. В качестве инжектора радикалов CF рабочая смесь содержит газообразный перфторуксусный ангидрид - (CFCO)О при парциальном давлении 0.05-0.5 от парциального давления перфторйодида. Дополнительно рабочая смесь может содержать инертный буферный газ. Технический результат заключается в обеспечении малой расходимости и хорошей однородности лазерного пучка с увеличением энергии на выходе, а также в снижении загрязнения рабочего объема твердыми продуктами фотолиза. 1 з.п. ф-лы, 1 ил.

Изобретение относится к квантовой электронике и может быть использовано при создании йодных фотодиссоционных лазеров с оптической накачкой.

К таким лазерам относится йодный фотодиссоционный лазер, в котором в качестве рабочего вещества используются различные перфторйодиды (Кормер С.Б. "Фотодиссоционные лазеры для управляемого термоядерного синтеза", Изв. АН СССР, Сер. физ, т.44, №10, 1980, с.2002…2017).

При эксплуатации этого лазера встают вопросы поднятия энергетики на выходе и воспроизводимости этой энергии. Йодный фотодиссоционный лазер работает следующим образом.

При инициировании рабочей среды оптическим излучением происходит фотолиз йодосодержащего вещества, который может быть представлен в следующем виде:

где RI - перфторйодид, hνн - квант оптической накачки, I* - йод в возбужденном состоянии (I(2P1/2)), R - радикал CF3, C2F5, C3F7 и др. Генерация происходит по схеме:

где hvг - рабочий квант излучения лазера (λ=1.315 мкм), I - атом йода в основном состоянии (I(2Р3/2)), но на работу йодного лазера влияют и вторичные химические реакции, такие как рекомбинация рабочего вещества

т.е. атомы не накапливаются на нижнем лазерном уровне, в результате чего образуются молекулы исходного рабочего йодида, например, C3F7I, CF3I и т.д., которые вновь фотодиссоциируют по схеме (1). Реакция рекомбинации играет определяющую роль в кинетике йодных фотодиссоционных лазеров.

В рабочей среде протекают и "вредные" процессы, такие как процессы тушения возбужденных атомов йода как исходными продуктами, так и возникающими в процессе фотолиза

сопровождающиеся наработкой молекулярного йода (I2) и загрязнением стеклянных поверхностей, а также процесс димеризации, снижающий роль реакции (3), т.е. образующийся в процессе фотолиза из радикалов димер (R2), уводит из процесса необходимые для рекомбинации радикалы R:

Для решения вопроса очистки, например, использовались дорогостоящие установки замкнутого цикла по очищению рабочей смеси от продуктов фотолиза и, в частности, от молекулярного йода, являющегося, кроме того, сильнейшим тушителем возбужденного йода. Применение таких установок не решило радикально стоящие вопросы (Борович Б.Л., Зуев B.C., Катулин В.А. и др. "Сильноточные излучающие разряды и газовые лазеры с оптической накачкой". - М.: Итоги науки и техники, сер. Радиотехника, т.15, 1978).

Известна рабочая смесь для йодного фотодиссоционного лазера, применение которой частично решает вопрос поднятия энергетики йодного фотодиссоционного лазера (Srinivasan R., Lankard J.R. J. Phys. Chem. "The Role of CF3-Radicals in the Photochemical Iodine Laser", v.78, №10, 1974, р.951). Рабочая смесь содержит основное рабочее вещество перфторйодид CF3I и в качестве инжектора радикалов гексафлюороазометан CF3NNCF3. Находясь в рабочем объеме лазера и подвергаясь воздействию световой накачки, добавка гексафлюороазометан CF3NNCF3 фотодиссоциирует по следующей схеме

создавая избыток радикалов CF3, которые рекомбинируют по схеме (3) в рабочий йодид CF3I.

Недостатком известной рабочей смеси является нерешенность проблемы загрязнения рабочего объема продуктами фотолиза, что отрицательно сказывается на энергетическом выходе лазера.

Задачей, решаемой настоящим изобретением, является повышение энергетического выхода лазера и снижение загрязненности рабочего объема твердыми продуктами фотолиза.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:

- увеличение энергии на выходе лазера;

- обеспечение малой расходимости и хорошей однородности лазерного пучка с увеличением энергии на выходе: эффективный градиент показателя преломления рабочей среды при максимальной накачке составляет dn/dx~8·10-7 см-1 и при L=100 см расходимость составляет ~8·10-5 рад.

- снижение загрязнения рабочего объема твердыми продуктами фотолиза.

Для решения поставленной задачи и достижения технического результата рабочая смесь для йодного фотодиссоционного лазера, включающая газообразный перфторйодид и инжектор дополнительных радикалов CF3, согласно изобретению в качестве инжектора радикалов CF3 содержит газообразный перфторуксусный ангидрид (CF3CO)2О при парциальном давлении 0,05-0,5 от парциального давления перфторйодида. Рабочая смесь может дополнительно содержать буферный газ.

В качестве йодосодержащего вещества могут использоваться различные перфторйодиды: i-C3F7I, n-C3F7I, t-C4F9I, C2F5I, CF3I и т.д. В качестве буферного газа выбираются химически инертные газы (Не, Ne, Ar, Kr, Xe, N2, SF6 и др.).

Под воздействием излучения накачки фотодиссоциация с перфторуксусным ангидридом протекает по следующей схеме (Кузнецова С.В., Маслов А.И. "Исследование реакций радикала CF3 с атомарным и молекулярным хлором". Химия высоких энергий, т.13, №5, 1979, с.448):

т.е. в результате фотодиссоциации в рабочей смеси образуется избыток радикалов (CF3) и буферные газы (CO2 и СО). Появление в рабочей среде химически активных молекул СО может способствовать переводу нелетучих загрязняющих продуктов фотолиза в летучие и тем самым способствовать очищению стеклянных поверхностей рабочего объема. Далее, что очень важно, в рабочем объеме с вновь образовавшимися радикалами и йодом (в основном состоянии) по схеме (3) происходит процесс рекомбинации:

и получившееся новое рабочее вещество - перфторйодид CF3I фотодиссоциирует по схеме (1), как и основной рабочий перфторйодид, использующийся в конкретном случае, такой как, например, i-C3F7I, n-C3F7I, t-C4F9I и т.д.

Кроме увеличения энергии на выходе лазера, экспериментально установлено, что предлагаемый перфторуксусный ангидрид удовлетворяет требованиям к рабочей смеси йодного лазера по времени появления оптических неоднородностей в рабочем объеме.

Предлагаемая рабочая смесь имеет оптимум по давлению составляющих компонентов. Сам перфторуксусный ангидрид является хоть и слабым (по сравнению с молекулярным йодом I2), но тушителем возбужденного йода (I(2Р1/2)). С повышением давления ангидрида процесс рекомбинации (3) будет конкурировать с процессами тушения (4, 5). Кроме того, из-за совпадения полос поглощения с основным рабочим веществом, ангидрид будет как бы экранировать основное рабочее вещество. Этим и определяется диапазон используемых давлений.

На чертеже показаны экспериментальные данные по отработке рабочих смесей для йодного фотодиссоционного лазера, а именно приведена зависимость лазерной энергии от парциального давления перфторуксусного ангидрида (CF3CO)2O:

зависимость 1-30 Торр i-C3F7I+705 Торр SF6;

зависимость 2-40 Торр i-C3F7I+705 Торр SF6.

Для определения динамического диапазона применения перфторуксусного ангидрида было приготовлено некоторое количество составов рабочих смесей, два из них приведены на чертеже. Первоначально готовилась рабочая смесь: 30 Торр i-C3F7I+705 Торр SF6 и далее к этой (основной) смеси добавлялся порциями перфторуксусный ангидрид. В результате срабатывания лазером получена экспериментальная зависимость (кривая 1). Первоначально заметен рост выходной лазерной энергии, а затем спад. Максимум выходной энергии наблюдается при ~8 Торр перфторуксусного ангидрида, а при 15 Торр рост прекращается, что составляет 0,5 от давления рабочего перфторйодида. Во втором случае (кривая 2) первоначально готовилась рабочая смесь: 40 Торр i-C3F7I+705 Торр SF6. Максимум выходной энергии наблюдается при ~10 Торр перфторуксусного ангидрида, а при 20 Торр рост прекращался, что также составляет 0,5 от давления рабочего перфторйодида. Таким образом, была зафиксирована динамическая пропорция основного рабочего вещества и перфторуксусного ангидрида, при которой регистрируется рост лазерной энергии высокого качества. В результате вариаций парциальными давлениями газов незначительный прирост выходной энергии компенсировался достижением высокого качества лазерной энергии, т.е. малой расходимостью и хорошей однородностью лазерного пучка. Направленность излучения лазера определяется степенью однородности показателя преломления рабочей среды в зоне генерации (усиления). В частности, направленность (расходимость) излучения в усилительном режиме определяется выражением

где dn/dx - поперечный градиент показателя преломления рабочей среды, L - освещаемая лампой накачки длина кюветы йодного лазера. В нашем случае эффективный градиент показателя преломления рабочей среды при максимальной накачке составлял dn/dx~8·10-7 см-1 и при L=100 см расходимость составляла ~8-10-5 рад.

По результатам экспериментов окончательно была определена рабочая смесь йодного фотодисоционного лазера, которая содержит йодосодержащее вещество, инжектор радикалов и буферный газ в качестве разбавителя при следующих соотношениях парциальных давлений компонентов:

Йодосодержащее вещество 1
Инжектор радикалов 0.05-0.5
Буферный газ 3-200

при этом полное давление рабочей среды йодного лазера может составлять 100-1000 Торр.

Источник поступления информации: Роспатент

Показаны записи 151-160 из 255.
10.04.2016
№216.015.3079

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, источник энергии, ключи, разделенные на две группы, и электровзрывные сети, при этом одна группа ключей выполнена в виде сильноточных и слаботочных полупроводниковых ключей, а...
Тип: Изобретение
Номер охранного документа: 0002580110
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.317f

Прибор для подрыва пиросредств

Изобретение относится к системам инициирования пиросредств. Прибор для подрыва пиросредств содержит микроконтроллер, источник энергии, ключи и электровзрывные сети, разделенные на две группы, при этом одна группа ключей выполнена в виде сильноточных и слаботочных полупроводниковых ключей, а...
Тип: Изобретение
Номер охранного документа: 0002580111
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f8

Корпус генератора импульсных напряжений

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе высоковольтного оборудования. Сущность изобретения: корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в...
Тип: Изобретение
Номер охранного документа: 0002580101
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3226

Помехоподавляющий фильтр

Изобретение относится к электротехнике и электронике и может быть использовано для подавления высокочастотных или импульсных помех в электрических цепях. Достигаемый технический результат - расширение частотного диапазона при увеличении подавления помех. Помехоподавляющий фильтр содержит...
Тип: Изобретение
Номер охранного документа: 0002580427
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.323d

Способ локализации высокотоксичных и экологически опасных веществ в горной выработке при взрывных работах

Изобретение относится к технике защиты окружающей среды от опасного и вредного воздействия высокотоксичных и экологически опасных веществ и может быть использовано для предотвращения последствий аварийных ситуаций при проведении в горной выработке взрывных работ с зарядами или взрывными...
Тип: Изобретение
Номер охранного документа: 0002580331
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3297

Генератор высоковольтных импульсов

Изобретение относится к высоковольтной импульсной технике и может быть использовано для создания наносекундных компактных генераторов. Достигаемый технический результат - уменьшение искажений выходного импульса генератора путем подавления высокочастотных колебаний переходного процесса....
Тип: Изобретение
Номер охранного документа: 0002581016
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.32fe

Установка для высокотемпературных механических испытаний объектов цилиндрической формы

Изобретение относится к механическим испытаниям объектов, а именно к устройствам для испытаний объектов на вибронагружение в различных средах при высоких температурах и давлениях. Установка содержит индукционный нагреватель, включающий водоохлаждаемую катушку в виде спирали, выполненной с...
Тип: Изобретение
Номер охранного документа: 0002582270
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3339

Упругий элемент липатова

Изобретение относится к области машиностроения. Упругий элемент выполнен в виде гибкого упругого стержня с закрепленными концами. Центральная часть имеет возможность больших упругих перемещений. Заданная форма предварительно придана упругой линии стержня путем частичного или полного прилегания...
Тип: Изобретение
Номер охранного документа: 0002582324
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3375

Способ изготовления трубчатых элементов из материала металлорезины и пресс-форма для его реализации

Изобретения относятся к области обработки металлов давлением. Способ изготовления трубчатых элементов из материала МР включает получение отрезков проволоки в виде растянутых спиралей. Формируют заготовку в виде рулона с отверстием. Размещают заготовку в пресс-форме и прессуют ее за два...
Тип: Изобретение
Номер охранного документа: 0002582169
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3394

Стенд для исследования рабочих характеристик быстродействующих электродетонаторов

Изобретение относится к области испытательного оборудования, предназначенного для испытаний на работоспособность СИ и ВУ при задействовании их импульсами тока различной формы и амплитуды в момент действия ударных нагрузок. Устройство включает испытательную и операционную зоны. В испытательной...
Тип: Изобретение
Номер охранного документа: 0002582204
Дата охранного документа: 20.04.2016
Показаны записи 1-2 из 2.
20.07.2014
№216.012.de0b

Способ приготовления многокомпонентных газовых смесей

Изобретение относится к приготовлению многокомпонентных газовых смесей и может быть использовано в лазерной технике, химической промышленности, в частности для приготовления смеси из перфторалкилиодида и буферных газов и последующего заполнения различных рабочих емкостей. Способ включает напуск...
Тип: Изобретение
Номер охранного документа: 0002522629
Дата охранного документа: 20.07.2014
10.04.2019
№219.017.0845

Устройство для заполнения емкости газом высокой чистоты

Изобретение относится к устройствам для заполнения емкостей газами высокой чистоты. Устройство для заполнения емкости газом высокой чистоты содержит систему напуска газа, снабженную заправочным трубопроводом с разъемом для емкости и коммутационной арматурой. Устройство характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002438946
Дата охранного документа: 10.01.2012
+ добавить свой РИД