×
09.05.2019
219.017.4fab

Результат интеллектуальной деятельности: МАГНИТОРЕЗИСТИВНЫЙ ДАТЧИК

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК). Магниторезистивный датчик содержит подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждой полоски, второй изолирующий слой, и защитный слой, на всей поверхности проводника управления расположена магнитожесткая пленка, причем ее коэрцитивная сила не менее чем втрое превышает поле магнитной анизотропии ферромагнитной пленки, а векторы намагниченности магнитожесткой пленки в соседних плечах мостовой схемы направлены перпендикулярно оси легкого намагничивания антипараллельно друг другу. В предлагаемом магниторезистивном датчике многократно уменьшен ток в проводнике управления, что существенно улучшает его технические характеристики за счет уменьшения потребляемой мощности и нагрева, а также возможности использования такого магниторезистивного датчика в линейке или матрице датчиков. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области магнитных наноэлементов на основе многослойных металлических наноструктур с магниторезистивным эффектом и может быть использовано для измерения магнитного поля в измерительных комплексах, научном и медицинском приборостроении, устройствах диагностики печатных плат и микросхем, биообъектов (бактерий, вирусов, токсинов и ДНК).

Известны магниторезистивные датчики магнитного поля с линейной вольт-эрстедной характеристикой (ВЭХ), формируемой магнитным полем, создаваемым током в проводнике управления, расположенном над тонкопленочными магниторезистивными полосками (Касаткин С.И., Киселева И.Д., Лопатин В.В., Муравьев A.M., Попадинец Ф.Ф., Сватков А.В. Магниторезистивный датчик // Патент РФ. 1999. №2139602). Однако для работы данного датчика магнитного поля требуется достаточно большая величина тока в проводнике управления.

Этот недостаток существенно уменьшен в магниторезистивном датчике магнитного поля с магнитомягкой пленкой над проводником управления (Касаткин С.И., Муравьев A.M. Магниторезистивный датчик // Патент РФ. 2001. №2175797). Однако для правильной и оптимальной работы такого датчика магнитного поля надо подгонять толщину магнитомягкой пленки под конкретные параметры устройства.

Задачей, поставленной и решаемой настоящим изобретением, является создание магниторезистивного датчика магнитного поля на основе металлической ферромагнитной наноструктуры с планарным протеканием сенсорного тока, имеющего линейную ВЭХ с небольшим током в проводнике управления и параметрами магнитожесткой пленки, не зависящими от топологии конструкции датчика.

Указанный технический результат достигается тем, что в магниторезистивном датчике, содержащем подложку с диэлектрическим слоем, на котором расположены соединенные в мостовую схему немагнитными низкорезистивными перемычками четыре тонкопленочные магниторезистивные полоски, содержащие каждая верхний и нижний защитные слои, между которыми расположены две ферромагнитные пленки с осью легкого намагничивания вдоль длины тонкопленочной магниторезистивной полоски, между которыми расположен разделительный слой, поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой, на котором сформирован проводник управления с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждой полоски, второй изолирующий слой, и защитный слой, на всей поверхности проводника управления расположена магнитожесткая пленка, причем ее коэрцитивная сила не менее чем втрое превышает поле магнитной анизотропии ферромагнитной пленки, а векторы намагниченности магнитожесткой пленки в соседних плечах мостовой схемы направлены перпендикулярно оси легкого намагничивания антипараллельно друг другу. На всей поверхности проводника управления магниторезистивного датчика может располагаться вспомогательный слой хрома, а на поверхности магнитожесткой пленки может располагаться дополнительный защитный слой.

Сущность предлагаемого технического решения заключается в том, что магнитожесткие полоски на поверхности проводника управления создают постоянные магнитные поля, разворачивающие векторы намагниченности магниторезистивных полосок и не зависящие от тока в проводнике управления и, тем самым, существенно уменьшающие величину этого тока, необходимого для этой же цели. Вспомогательный слой хрома увеличивает коэрцитивную силу магнитожестких полосок, что упрощает требования к созданию магнитожесткой пленки.

Изобретение поясняется чертежами: на фиг.1 представлен магниторезистивный датчик с вспомогательным слоем хрома и магнитожесткой пленкой на поверхности проводника управления в разрезе; на фиг.2 показана конструкция магниторезистивного датчика, вид сверху.

Магниторезистивный датчик магнитного поля содержит подложку 1 (фиг.1) с диэлектрическим слоем 2, тонкопленочные магниторезистивные полоски, содержащие нижний 3 и верхний 4 защитные слои, между которыми расположены ферромагнитные пленки 5 и 6, разделенные слоем 7. Поверх тонкопленочных магниторезистивных полосок расположен первый изолирующий слой 8, на котором сформирован проводник управления 9 с рабочими частями, расположенными над тонкопленочными магниторезистивными полосками вдоль каждого их ряда. На поверхности проводника управления 9 последовательно расположены вспомогательный слой хрома 10, магнитожесткая пленка 11 и защитный слой 12. Выше расположен верхний защитный слой 13.

Конструктивно, магниторезистивный датчик магнитного поля состоит из четырех тонкопленочных магниторезистивных полосок 14-17 (фиг.2) мостовой схемы. Эти полоски 14-17 соединены в мостовую схему немагнитными низкорезистивными перемычками 18-21. В низкорезистивных перемычках выполнены контактные площадки 22-25. Над тонкопленочными магниторезистивными полосками 14-17 расположен проводник управления 26 с контактными площадками 27-28, вспомогательным слоем хрома 10, магнитожесткой пленкой 11 и защитным слоем 12, причем проводник управления 26, вспомогательный слой хрома 10, магнитожесткая пленка 11 и защитный слой 12 имеют одну топологию.

Оценим толщину магнитожесткой пленки 11. Величина создаваемого ею в расположенных под нею тонкопленочных магниторезистивных полосках 14-17 постоянного магнитного поля Н определяется выражением

где MS и d - намагниченность насыщения и толщина магнитожесткой пленки 11, w - ширина проводника управления 26.

Величина магнитного поля Н, необходимого для отклонения вектора намагниченности ферромагнитных пленок 5, 6 на 45° от оси легкого намагничивания определяется суммой поля магнитной анизотропии НK этих пленок и создаваемых ими магнитных размагничивающих полей НP. Для типичных значений w=40 мкм, MS=1000 Гс, НK=10 Э величина Н составляет величину около 20-25 Э. Из (1) следует, что d=0,1 мкм, что является реальной величиной для вакуумного напыления металлических ферромагнитных пленок. Нами, методом вакуумного напыления, получены Сr(30 нм)-CoNi(100 нм) наноструктуры с коэрцитивной силой около 170 Э, что более чем достаточно для их использования в качестве магнитожестких пленок в магниторезистивном датчике. Минимальная коэрцитивная сила магнитожесткой пленки 11 должна не менее чем в 1,5 раза превышать максимальные суммарные магнитные поля, возникающие при работе датчика, включая внешние магнитные поля, для исключения размагничивания магнитожесткой пленки 11. В то же время нельзя сильно увеличивать коэрцитивную силу магнитожесткой пленки 11, так как это приводит к росту требуемой для ее намагничивания амплитуды импульса тока в проводнике управления 26.

Работа магниторезистивного датчика магнитного поля происходит следующим образом. В исходном состоянии векторы намагниченности ферромагнитных пленок тонкопленочных магниторезистивных полосок 14-17 направлены вдоль ОЛН антипараллельно друг другу. Под действием постоянного магнитного поля, создаваемого магнитожесткими пленками 11 и направленного перпендикулярно ОЛН, векторы намагниченности тонкопленочных полосок 14-17 разворачиваются в направлении этого постоянного магнитного поля. Перед началом работы в проводник управления 26 подается импульс тока, создающий магнитное поле, превышающее коэрцитивную силу магнитожесткой пленки и намагничивающий магнитожесткую пленку 11 перпендикулярно ОЛН ферромагнитных пленок 5, 6 тонкопленочных магниторезистивных полосок 14-17 и антипараллельно друг другу. При этом угол отклонения векторов намагниченности ферромагнитных пленок 5, 6 должно составлять приблизительно 45°, что соответствует максимальной чувствительности и линейности ВЭХ магниторезистивного датчика.

Для считывания сигнала в мостовую схему с тонкопленочными магниторезистивными полосками 14-17 магниторезистивного датчика подается постоянный сенсорный ток. Перед началом измерения векторы намагниченности ферромагнитной пленки 5, 6 в тонкопленочных магниторезистивных полосках 14-17 направлены антипараллельно друг другу и отклонены от ОЛН ферромагнитной пленки приблизительно на 45°. Ввиду разброса параметров магниторезистивного датчика, в первую очередь, ферромагнитных пленок 5, 6 и магнитожестких пленок 11, угол отклонения ферромагнитных пленок 5, 6 - не оптимальный. Поэтому в проводник 16 подается постоянный ток нужной полярности, позволяющий отклонить векторы намагниченности ферромагнитных пленок 5, 6 на оптимальный, относительно оси легкого намагничивания, угол 45°. Величина этого тока в несколько раз меньше, чем в прототипе, так как требуется только небольшой доворот векторов намагниченности ферромагнитных пленок 5, 6, а не полный разворот этих векторов намагниченности.

Магнитные поля, создаваемые магнитожесткими пленками 11 в соседних плечах мостовой схемы направлены антипараллельно друг другу. Это приводит к отклонению векторов намагниченности ферромагнитных пленок 5, 6 соседних плеч мостовой схемы в противоположных направлениях. При воздействии на мостовую схему внешнего однородного магнитного поля векторы намагниченности ферромагнитных пленок 5, 6 будут отклоняться в направлении этого магнитного поля, но, в двух плечах векторы намагниченности будут приближаться к оси тонкопленочных магниторезистивных полосок (направлению сенсорного тока), а в двух других - отклоняться. Изменение магнитосопротивления в анизотропном магниторезистивном эффекте пропорционально cos2φ, где φ - угол между направлением сенсорного тока в тонкопленочной магниторезистивной полоске и вектором намагниченности ферромагнитной пленки. При этом в одной паре плеч мостовой схемы магнитосопротивление будет увеличиваться, а в другой паре плеч - уменьшаться. Это приведет к разбалансу мостовой схемы и появлению на ее двух вершинах электрического сигнала считывания.

Таким образом, в предлагаемом магниторезистивном датчике многократно уменьшен ток в проводнике управления, что существенно улучшает его технические характеристики за счет уменьшения потребляемой мощности и нагрева, а также возможности использования такого магниторезистивного датчика в линейке или матрице датчиков.

Источник поступления информации: Роспатент

Показаны записи 61-70 из 101.
10.04.2019
№219.017.07ab

Устройство для получения электрической энергии при колебании рельсов

Изобретение относится к области железнодорожного транспорта и направлено на создание устройства для получения электрической энергии при колебании рельсов во время движения железнодорожных составов. Устройство содержит разветвленную магнитную цепь, состоящую из трех участков. Два первых участка...
Тип: Изобретение
Номер охранного документа: 0002451616
Дата охранного документа: 27.05.2012
10.04.2019
№219.017.07bf

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Техническим результатом изобретения является расширение границ области применения датчика давления и повышение его чувствительности. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002408856
Дата охранного документа: 10.01.2011
10.04.2019
№219.017.0860

Электромагнитный аппарат с поступательным движением якоря

Изобретение относится к электротехнике, к электромагнитным приводам, которые могут быть в составе коммутационных аппаратов и в других электромагнитных системах, в которых требуется получить большой ход движения якоря. Технический результат состоит в увеличении диапазона движения якоря,...
Тип: Изобретение
Номер охранного документа: 0002435287
Дата охранного документа: 27.11.2011
10.04.2019
№219.017.08b3

Устройство управления соединением источника и приемника данных при сетевом обмене данных

Изобретение относится к области вычислительной техники, а именно к устройствам управления соединением источников и приемников данных. Техническим результатом изобретения является устранение конфликтов доступа источников данных и уменьшение мощности, потребляемой источником данных. Устройство...
Тип: Изобретение
Номер охранного документа: 0002434271
Дата охранного документа: 20.11.2011
10.04.2019
№219.017.0942

Способ получения электрической энергии при колебании рельсов

Изобретение относится к способам получения электрической энергии при колебании рельсов во время движения железнодорожных составов. Для получения электрической энергии формируют замкнутую магнитную цепь, состоящую из двух участков, первым из которых является часть рельса, совершающего...
Тип: Изобретение
Номер охранного документа: 0002444458
Дата охранного документа: 10.03.2012
17.04.2019
№219.017.15ba

Способ индикации наличия жидкости в резервуаре и устройство для его осуществления

Изобретения относятся к электрическим методам и средствам контроля и могут быть использованы для индикации наличия жидкости в резервуарах и трубопроводах в условиях изменяющихся температуры, давления и свойств жидкости, а также для условий невесомости, при которых могут иметь место налипания на...
Тип: Изобретение
Номер охранного документа: 0002393435
Дата охранного документа: 27.06.2010
17.04.2019
№219.017.15c6

Способ измерения сопротивления, индуктивности и емкости (варианты)

Изобретение относится к области измерительной техники. Последовательно осуществляют четыре такта измерения частоты колебаний, причем в первом такте формируют измеряемую величину . Во втором такте, выполняемом через фиксированный промежуток времени после начала первого такта, формируют...
Тип: Изобретение
Номер охранного документа: 0002395100
Дата охранного документа: 20.07.2010
19.04.2019
№219.017.2e14

Двухпортовая ячейка оперативной памяти

Изобретение относится к области вычислительной техники и может быть использовано для реализации оперативной памяти в микропроцессорных системах. Техническим результатом является повышение быстродействия устройства. Устройство содержит два КМДП инвертора, два транзистора записи n-типа, два...
Тип: Изобретение
Номер охранного документа: 0002391721
Дата охранного документа: 10.06.2010
19.04.2019
№219.017.2fad

Способ преобразования тепловой энергии в электрическую энергию

Изобретение может быть использовано в электрических машинах для прямого преобразования тепловых эффектов в электричество. Замкнутый магнитопровод содержит обмотку возбуждения, получающую питание от источника постоянного тока, и вставку, выполненную из ферромагнитного материала, обладающего...
Тип: Изобретение
Номер охранного документа: 0002379820
Дата охранного документа: 20.01.2010
19.04.2019
№219.017.30e3

Частотная адаптивная система управления

Изобретение относится к области систем автоматического управления объектами широкого класса с неизвестными, медленно изменяющимися параметрами и неизвестными ограниченными внешними возмущениями. Техническим результатом является обеспечение устойчивости адаптивной системы при дрейфе параметров...
Тип: Изобретение
Номер охранного документа: 0002413270
Дата охранного документа: 27.02.2011
Показаны записи 31-34 из 34.
19.07.2019
№219.017.b66e

Чувствительный элемент преобразователя магнитного поля

Использование: для конструкции оптоволоконных датчиков магнитного поля. Сущность изобретения заключается в том, что чувствительный элемент преобразователя магнитного поля для волоконно-оптического датчика содержит подложку из монокристаллического кремния, мембрану, расположенную над...
Тип: Изобретение
Номер охранного документа: 0002694788
Дата охранного документа: 16.07.2019
29.02.2020
№220.018.077a

Структура для преобразователей механических деформаций

Изобретение относится к элементам магнитной стрейнтроники и может быть использовано в преобразователях механических деформаций (напряжений, давлений), акустических преобразователях на основе многослойных тонкоплёночных магнитострикционных наноструктур с анизотропным магниторезистивным эффектом....
Тип: Изобретение
Номер охранного документа: 0002715367
Дата охранного документа: 26.02.2020
25.06.2020
№220.018.2b25

Преобразователь электрического тока

Изобретение может быть использовано для обнаружения электрического тока в проводниках электротехнических устройств. Преобразователь электрического тока содержит разъемный корпус 1 с отверстием 2 для размещения контролируемого проводника. Корпус 1 выполнен из двух частей: основания 3 и крышки 4...
Тип: Изобретение
Номер охранного документа: 0002724304
Дата охранного документа: 22.06.2020
21.05.2023
№223.018.699d

Способ электрохимического осаждения пленок тройного сплава conife

Изобретение относится к области гальванотехники, в частности к осаждению пленок тройного сплава CoNiFe для элементов интегральных микросистем, концентрирующих или экранирующих магнитное поле. Способ включает осаждение пленок в гальванической ванне с вертикальным расположением электродов при...
Тип: Изобретение
Номер охранного документа: 0002794924
Дата охранного документа: 25.04.2023
+ добавить свой РИД