×
09.05.2019
219.017.4dd7

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ РАДИОАКТИВНЫХ КОМПОНЕНТОВ И МАСЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки и обезвреживания жидких радиоактивных отходов. Сущность изобретения: способ очистки сточных вод от радиоактивных компонентов, в состав которых входят растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада, путем концентрирования радиоактивных компонентов и минерального масла. При этом сточные воды перед переработкой подкисляют до величины рН 2,5-3,0. Далее вводят коагулянт на основе солей железа (III), затем катионоактивный флокулянт на основе модифицированного полиакриламида. После чего нейтрализуют щелочью до величины рН>7 с последующим центрифугированием смеси с получением после центрифугирования очищенной воды и концентрата, содержащего радиоактивные компоненты и минеральное масло. Осуществляют последующее отверждение и захоронение концентрата. Преимущества изобретения заключаются в сокращении расхода энергии и ускорении процесса. 5 табл.

Способ очистки сточных вод от минерального масла и радионуклидов относится к области переработки жидких отходов, в состав которых входит вода, растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада металлообрабатывающих предприятий и гальванических производств, а также может быть использовано в технологии производства урана и его соединений.

Известен способ переработки жидких радиоактивных отходов [А.С.Копылов, Е.И.Верховский. Спецводоочистка на атомных электростанциях. М.: Энергоатомиздат, 1988] (прототип), заключающийся в использовании метода выпарки. Метод выпаривания (термическая переработка) радиоактивных растворов заключается в нагревании воды до кипения и упаривания ее. В получаемый при этом пар переходит минимальное количество примесей, включающих радиоактивные компоненты. Основная часть загрязняющих примесей остается в упаренной воде, что способствует существенному уменьшению объема жидких радиоактивных отходов. Этот метод используется для переработки жидких радиоактивных отходов (ЖРО) низкой и средней активности. При охлаждении пара получают конденсат, содержащий масло и радиоактивные компоненты с концентрацией, допустимой для его сброса на общезаводские очистные сооружения. Кубовый остаток (упаренный водный раствор ЖРО) содержит воду, масло и радиоактивные компоненты. Его помещают либо в хранилище жидких отходов, либо подвергают отверждению и направляют на захоронение в виде твердых радиоактивных отходов. Данный способ позволяет достаточно эффективно производить переработку низкоактивных жидких отходов, обеспечивает высокую степень очистки основной массы воды как от масла, так и от радиоактивных компонентов и достаточно эффективно снижает объем радиоактивных отходов.

Недостатки известного способа-прототипа, которые в определенной степени ограничивают его применение, заключаются в следующем. Во-первых, высокие энергетические затраты на переработку сточных вод. Метод выпарки - один из наиболее энергоемких процессов. Во-вторых, при высоком содержании масла в сточных водах происходит интенсивное пенообразование в процессе выпарки, что ведет к выносу с паром значительной массы воды с радиоактивными компонентами и маслом. Это приводит к необходимости проведения либо повторной очистки воды от радионуклидов методом выпарки, либо создания дополнительных технологий очистки конденсата от радионуклидов. Наконец, процесс выпарки - это продолжительная операция, что приводит к необходимости использования накопительных емкостей больших объемов. Кроме того, для предварительного нагрева воды требуются дополнительно теплообменники, а для получения конденсата из пара - использование холодильников.

Технической задачей изобретения является устранение указанных недостатков и обеспечение существенного сокращения расхода энергии на процесс очистки ЖРО от масла и радиоактивных компонентов, сокращение времени на очистку воды, что приведет к снижению объема и количества основного и вспомогательного оборудования, а также проведение очистки сточных вод от загрязняющих компонентов за одну операцию, при их содержании в широком диапазоне концентраций, что приведет к сокращению рабочего времени на обслуживание передела.

Технический результат достигается путем очистки сточных вод от радиоактивных компонентов, в состав которых входят растворенное и/или в виде эмульсии минеральное масло, растворенные и твердые частицы радиоактивных компонентов урана и продуктов его распада путем концентрирования радиоактивных компонентов и минерального масла с последующим отверждением и захоронением концентратов, при этом сточные воды перед переработкой подкисляют до величины рН 2,5-3,0, далее вводят коагулянт на основе солей железа (III), затем катионоактивный флокулянт на основе модифицированного полиакриламида, после чего нейтрализуют щелочью до величины рН>7 с последующим центрифугированием смеси с получением после центрифугирования очищенной воды и концентрата, содержащего радиоактивные компоненты и минеральное масло.

Выбор указанных параметров подкисления и нейтрализации, реагентов и метода последующей переработки жидких радиоактивных сточных вод, содержащих минеральное масло, обусловлен тем, что в этих условиях обеспечивается высокая степень очистки воды как от радиоактивных компонентов, так и от минерального масла до нормативных показателей.

Сопоставление эффективности предложенного и ранее известного способа-прототипа приведено в примерах.

Пример 1. Радиоактивные сточные воды подкисляли до величины рН около 3. Далее в подкисленные сточные воды в количестве 1 л с общей исходной удельной активностью 950 Бк/кг вводили коагулянт и флокулянт. В качестве коагулянта использовалась соль хлорида железа (III) в качестве флокулянтов - катионоактивный, анионоактивный или нейтральный модифицированный полиакриламид. Коагулянт вводили в количестве из расчета 100 мг/кг по Fe3+. Количество введенного флокулянта 15 мг. После введения реагентов проводили нейтрализацию щелочью до величины рН более 7. Осадок полученной пульпы после нейтрализации отделяли от раствора различными методами: отстаиванием, фильтрацией и центрифугированием. Центрифугирование проводили в течение 15 мин при скорости вращения 10000 об/мин. Очищенную от осадка воду подвергали радиохимическому анализу. Результаты испытаний представлены в табл.1. Для сравнения в табл.1 даны результаты по очистке воды, содержащей радиоактивные компоненты без добавления реагентов или с добавлением одного из них. В табл.2 приведены данные по скорости отстаивания осадка с использованием различных флокулянтов после введения коагулянта, которые характеризуют эффективность действия флокулянта при очистке воды от взвешенных веществ.

Таблица 1
Влияние коагулянта и флокулянтов на очистку воды от радиоактивных компонентов различными методами
Способ отделения взвешенных веществ от раствораОстаточная удельная активность воды (Бк/кг) при использовании различных типов модифицированного полиакриамида
КатионоактивныйАнионоактивныйНейтральныйБез добавления коагулянта и флокулянтаБез добавления флокулянтаБез добавления коагулянта с катионоактивным флокулянтом
Центрифугирование
0,3

126

94

110

70

115
Фильтрация5,015610812575120
Отстаивание3518416517090190

Скорость отстаивания определяли в мерном цилиндре. Время отстаивания фиксировали при прекращении изменения высоты слоя осадка.

При сопоставлении полученных данных видно, что наиболее эффективным флокулянтом является модифицированный полиакриламид катионного типа, а метод центрифугирования обеспечивает наиболее полную очистку воды от радиоактивных компонентов.

Таблица 2
Скорость отстаивания осадка при добавлении в радиоактивные сточные воды коагулянта и модифицированного полиакриламида различного типа
Скорость отстаивания осадка (час) при использовании различных типов модифицированного полиакриамида
КатионоактивныйАнионоактивныйНейтральный
0,25246

Пример 2. По экспериментальным результатам данного примера определено оптимальное количество реагентов, требующееся для очистки воды от радиоактивных компонентов. В подкисленные сточные воды объемом 1 л вводился коагулянт в виде соли сульфата железа (III) и катионоактивный флокулянт в различных соотношениях, после этого проводилась нейтрализация воды до значения рН 8,5 и далее производилось центрифугирование пульпы. Полученные данные сведены в табл.3.

Таблица 3
Удельная активность очищенной воды (Бк/кг) в зависимости от количества введенных реагентов перед центрифугированием
Концентрация железа (III), добавленного в сточную воду, мг/лКоличество введенного катионоактивного флокулянта, мг/л
51015203040
50552828303344
75187892634
10030,3<0,31,5615
1503<0,3<0,30.84,512
2002<0,3<0,30,65,810

Удельная активность исходной воды 930 Бк/кг.

Из полученных результатов следует, что при низкой концентрации флокулянта и коагулянта (50 мг/л Fe3+ и флокулянта 5 мг/л) наблюдается неполная очистка воды от радиоактивных компонентов. При дозе флокулянта свыше 20 мг/л степень очистки воды от радионуклидов начинает снижаться. При увеличении концентрации коагулянта свыше 100-150 мг/л степень очистки фактически не изменяется. Увеличение концентрации железа приводит лишь к дополнительному расходу реагента. Таким образом, оптимальный расход реагентов составляет: соль железа в перерасчете на Fe3+ 100-150 мг/л, расход флокулянта - 10-20 мг/л.

Пример 3. Сточная вода перед очисткой имела следующие параметры: рН 8,3, активность 980 Бк/кг и содержание минерального масла 180 мг/л. В сточную воду, исходную и подкисленную до различных значений рН, вводили коагулянт и флокулянт. После подкисления воду нейтрализовали щелочью до различных значений рН. Далее проводили центрифугирование в одинаковых условиях. После очистки определяли удельную активность воды и концентрацию минерального масла. Полученные результаты приведены в табл. 4. Как следует из полученных результатов, предварительное подкисление сточной воды способствует повышению степени очистки воды как от радиоактивных компонентов, так и от минерального масла, если после подкисления воду нейтрализовать до величины рН более 7,0. Подкисление воды ниже величины рН 2,5-3,0 не приводит к изменению степени очистки сточных вод от радиоактивных компонентов и минерального масла, но ведет к необоснованному увеличению расхода реагентов. Если в сточную воду без предварительного подкисления вводится коагулянт, происходит его гидролиз и выпадение гидроксида железа (III), что ухудшает процесс формирования осадка и очистки воды.

Таблица 4
Удельная активность воды после очистки с предварительным ее подкислением и последующей нейтрализацией после введения коагулянта и флокулянта
Удельная активность воды (Бк/кг) и содержание минерального масла (мг/л) после очистки без предварительного подкисленияВеличина рН после подкисления сточной водыУдельная активность воды (Бк/кг) и минерального масла (мг/л) после очистки, предварительно нейтрализованная до различных значений рН
6,07,07,58,09,010,0
26,6/432,05,5/260,3/180,3/19<0,3/17<0,3/18<0,3/20
2,54,8/220,3/210,3/19<0,3/17<0,3/19<0,3/19
3,08,4/260,4/180,5/180,3/190,3/17<0,3/20
4,518/2815/2521/2524/2619/2421/26
5,026/3217/3422/3418/3421/3322/34

В числителе - активность воды, в знаменателе - концентрация масла.

Пример 4. После подкисления сточной воды, содержащей 180 мг/л минерального масла и удельной активностью 980 Бк/кг, после ее подкисления при оптимальных условиях вводились в качестве коагулянта хлорид, нитрат и сульфат железа (III). После добавления флокулянта вода подвергалась нейтрализации щелочью до величины рН 9,0 и центрифугировалась. В результате очистки практически получены одинаковые результаты. Удельная активность очищенной воды составила менее 0,3 Бк/кг, концентрация минерального масла - в переделах 18-20 мг/л.

Пример 5. В данном примере проведено сопоставление результатов промышленных испытаний очистки сточной воды.

Таблица 5
Сравнительные характеристики переработки радиоактивных сточных вод
Техническая характеристикаМетод переработки ЖРО
СепарированиеВыпарка
Число единиц оборудования35
Расход энергии на переработку 50 м3 радиоактивных сточных вод (годовой расход)8,8×102 кВт3,1×106 кВт (2700 Гкал)
Время на подготовку установки к работе15 мин2 часа
Производительность установки200 л/ч90 л/ч
Удельная активность очищенной воды (допустимая норма 30 Бк/кг)0,3 Бк/кгоколо 30 Бк/кг
Содержание минерального масла в очищенной воде (мг/л)1822
Повторная переработка очищенной водыНе требуетсяПериодически требуется
Расход реагента на 1 м3 ЖРО100 г хлорного железаНе требуется
10 г флокулянта
800 г серной кислоты
1600 г гидроксида натрия

По предлагаемому способу переработано около 50 м3 радиоактивных сточных вод. Причем 10 м3 из них не поддавались переработке методом выпарки из-за высокого содержания масла, что приводило к интенсивному ценообразованию и, как следствие, загрязнению конденсата радиоактивными компонентами и минеральным маслом.

Таким образом, использование предлагаемого способа позволяет:

а) существенно повысить степень очистки сточных вод от радиоактивных загрязнений за одну стадию;

б) существенно снизить расходы энергии;

в) сократить число единиц оборудования;

г) обеспечить сокращение рабочего времени на обслуживание процесса очистки сточных вод от радиоактивных загрязнений.

Способочисткисточныхводотрадиоактивныхкомпонентов,всоставкоторыхвходятрастворенноеи/иливвидеэмульсииминеральноемасло,растворенныеитвердыечастицырадиоактивныхкомпонентовуранаипродуктовегораспада,путемконцентрированиярадиоактивныхкомпонентовиминеральногомасласпоследующимотверждениемизахоронениемконцентратов,отличающийсятем,чтосточныеводыпередпереработкойподкисляютдовеличинырН2,5-3,0,далеевводяткоагулянтнаосновесолейжелеза(III),затемкатионоактивныйфлокулянтнаосновемодифицированногополиакриламида,послечегонейтрализуютщелочьюдовеличинырН>7споследующимцентрифугированиемсмесисполучениемпослецентрифугированияочищеннойводыиконцентрата,содержащегорадиоактивныекомпонентыиминеральноемасло.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
19.04.2019
№219.017.303a

Электрогидравлический преобразователь

Преобразователь предназначен для электрогидравлических систем привода рабочих органов. Электрогидравлический преобразователь содержит двухсторонний плунжер с приводом возвратно-поступательного движения. На концах плунжера расположены гидроцилиндры, поочередно сообщающиеся посредством...
Тип: Изобретение
Номер охранного документа: 0002308619
Дата охранного документа: 20.10.2007
29.04.2019
№219.017.3e8d

Полимерная композиция для биологической защиты от нейтронного излучения

Изобретение относится к области защиты от ионизирующего излучения. Сущность изобретения: полимерная композиция для биологической защиты от нейтронного излучения включает олефиновый полимер, представляющий собой полипропилен, и борсодержащий материал. Полимерная композиция в качестве...
Тип: Изобретение
Номер охранного документа: 0002260213
Дата охранного документа: 10.09.2005
09.05.2019
№219.017.4ac6

Устройство для поверки манометров

Сущность: в устройстве, содержащем коллектор для подключения образцового прибора и поверяемых манометров, подключенный к баку с жидкостью и источнику давления через регулирующую и распределительную аппаратуру, в качестве образцового прибора применен датчик давления, электрически соединенный с...
Тип: Изобретение
Номер охранного документа: 0002282166
Дата охранного документа: 20.08.2006
09.05.2019
№219.017.4b0d

Кумулятивный заряд

Изобретение относится к прострелочно-взрывным работам кумулятивными перфораторами в нефтяных и газовых скважинах. Обеспечивает увеличение глубины пробития канала, формирование устойчивой кумулятивной струи. Кумулятивный заряд содержит корпус с размещенной в нем профилированной шашкой...
Тип: Изобретение
Номер охранного документа: 0002298762
Дата охранного документа: 10.05.2007
09.05.2019
№219.017.4ca7

Способ обработки режущего инструмента в жидком азоте и его использование

Изобретение относится к области машиностроения при изготовлении деталей режущим инструментом (РИ) из быстрорежущей стали и использованию заготовок с повышенной твердостью и из труднообрабатываемых металлов. Ударное охлаждение фрезы (РИ) в жидком азоте выполняют пятикратно, после этого РИ...
Тип: Изобретение
Номер охранного документа: 0002315116
Дата охранного документа: 20.01.2008
18.05.2019
№219.017.555f

Инертный состав для испытания пресс-форм и изготовления макетных зарядов

Изобретение относится к инертным составам, имитирующим технологические параметры переработки различных взрывчатых составов, а также их физико-механические показатели (среднюю плотность, условный предел прочности при сжатии). Предложенный инертный состав для испытания пресс-форм и изготовления...
Тип: Изобретение
Номер охранного документа: 02238255
Дата охранного документа: 20.10.2004
18.05.2019
№219.017.5564

Способ получения металлического свинца

Изобретение относится к области выделения и очистки свинца, в том числе изотопнообогащенного, полученного методом электромагнитной сепарации. В предложенном способе, включающем переработку свинецсодержащего концентрата с получением соединений свинца, их термообработку при 200-600°С и...
Тип: Изобретение
Номер охранного документа: 02237735
Дата охранного документа: 10.10.2004
18.05.2019
№219.017.5597

Способ изготовления двухслойной сборки

Использование: в области изготовления конструкционных изделий повышенной прочности для биологической защиты от нейтронных излучений в различных отраслях техники. Двухслойная сборка состоит из внутреннего слоя боропласта и наружного - графитосодержащего полипропилена. Способ осуществляют путем...
Тип: Изобретение
Номер охранного документа: 02229982
Дата охранного документа: 10.06.2004
18.05.2019
№219.017.58bf

Полимерная композиция

Изобретение может быть использовано для изготовления конструкционных изделий для биологической защиты от радиоактивного излучения. Полимерная композиция содержит вольфрам с дисперсностью от 0,5 до 160 мкм, порошковое железо и полипропилен. Содержание в составе композиции фракции вольфрама до 30...
Тип: Изобретение
Номер охранного документа: 0002326905
Дата охранного документа: 20.06.2008
24.05.2019
№219.017.5dc2

Способ регенерации бора элементарного, обогащенного по изотопу бор-10, из боронаполненных полимеров

Изобретение относится к области регенерации дорогостоящих компонентов из материалов от разборки изделий для вторичного использования. Сущность заключается в том, что регенерацию порошка бора, обогащенного по изотопу бор-10, из отходов боронаполненных полимеров осуществляют последовательным...
Тип: Изобретение
Номер охранного документа: 0002688884
Дата охранного документа: 22.05.2019
Показаны записи 11-20 из 35.
25.08.2017
№217.015.c347

Способ получения оксида скандия из концентрата скандия

Изобретение относится к металлургии цветных металлов, а именно к технологии получения оксида скандия из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. Способ получения оксида скандия включает растворение...
Тип: Изобретение
Номер охранного документа: 0002618012
Дата охранного документа: 02.05.2017
26.08.2017
№217.015.d4b5

Способ переработки сбросных скандийсодержащих растворов уранового производства

Изобретение относится к металлургии цветных металлов, а именно к технологии извлечения скандия из техногенных и продуктивных скандийсодержащих растворов, образующихся после извлечения урана. В способе переработки сбросных скандийсодержащих растворов уранового производства согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002622201
Дата охранного документа: 13.06.2017
20.01.2018
№218.016.15a1

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов (РЗЭ) при комплексной переработке технологических и продуктивных растворов, и может быть использовано в технологии получения концентратов РЗЭ. B способе извлечения РЗЭ сорбцию РЗЭ...
Тип: Изобретение
Номер охранного документа: 0002635206
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1d39

Способ получения концентрата урана из нитратно-сульфатных растворов

Изобретение относится к области гидрометаллургии и может быть использовано для получения уранового концентрата в технологии природного урана. Способ получения уранового концентрата из нитратно-сульфатного десорбата, образующегося в результате десорбции урана из насыщенного анионита...
Тип: Изобретение
Номер охранного документа: 0002640697
Дата охранного документа: 11.01.2018
10.05.2018
№218.016.3963

Способ получения оксида скандия из концентрата скандия

Изобретение относится к технологии получения оксида скандия (ScO) из концентрата скандия, попутно выделяемого, в том числе, при извлечении урана, переработке руд и отходов цветных и редких металлов. В способе получения оксида скандия согласно изобретению реэкстракцию скандия проводят раствором...
Тип: Изобретение
Номер охранного документа: 0002647047
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.4664

Твердый экстрагент с высокой динамической обменной емкостью для извлечения скандия и способ его получения

Изобретение относится к составу и способу получения твердого экстрагента для извлечения скандия из сернокислых растворов. Предлагается твердый экстрагент (ТВЭКС) для извлечения скандия из скандийсодержащих растворов, содержащий стиролдивинилбензольную матрицу с ди-(2-этилгексил)фосфорной...
Тип: Изобретение
Номер охранного документа: 0002650410
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.4928

Способ переработки жидких отходов производства диоксида титана

Изобретение может быть использовано в химической, металлургической, электронной промышленности. Для переработки жидких отходов производства диоксида титана проводят экстракцию скандия из гидролизной серной кислоты (ГСК) на экстрагенте, состоящем из смеси ди(2-этилгексил)фосфорной кислоты...
Тип: Изобретение
Номер охранного документа: 0002651019
Дата охранного документа: 18.04.2018
13.12.2018
№218.016.a692

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. Получение концентрата скандия из скандийсодержащего раствора проводят сорбцией скандия из скандийсодержащего раствора на...
Тип: Изобретение
Номер охранного документа: 0002674717
Дата охранного документа: 12.12.2018
13.04.2019
№219.017.0c72

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора согласно...
Тип: Изобретение
Номер охранного документа: 0002684663
Дата охранного документа: 11.04.2019
29.05.2019
№219.017.63b8

Способ приготовления полимерной композиции

Изобретение предназначено для изготовления биологической защиты от радиоактивных излучений, применяемых в атомных энергетических установках. Способ приготовления полимерной композиции включает операцию смешения порошкового вольфрама, порошкового железа и порошкообразного полипропилена. Перед...
Тип: Изобретение
Номер охранного документа: 0002277548
Дата охранного документа: 10.06.2006
+ добавить свой РИД