×
09.05.2019
219.017.4c07

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГАЗОВОГО ФАКТОРА НЕФТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области добычи нефти и может быть использовано для измерения количества газа, извлекаемого вместе с нефтью, а также для оперативного контроля и регулирования процесса выработки запасов нефти и газа. Техническим результатом изобретения является повышение точности способа со значительным сокращением времени остановок скважин. Для этого измеряют плотность нефти, разгазированной при стандартных условиях, коэффициент растворимости газа и температуру потока на устье добывающей скважины. Дополнительно измеряют уровень нефти в затрубном пространстве скважины, затрубное давление и поправочный коэффициент на растворимость газа при средней температуре нефти в затрубном пространстве скважины. Газовый фактор определяют из условия равенства объема выделившегося из нефти газа свободному объему газа в затрубном пространстве, приведенному к стандартным условиям. При этом газовый фактор независим от обводненности продукции скважины и не чувствителен к пенистости нефтей. 1 табл.

Изобретение относится к области добычи нефти и газа и может быть использовано для измерения количества газа, извлекаемого вместе с нефтью, а также для оперативного контроля и регулирования процесса выработки запасов нефти и газа.

Известны способы измерения газового фактора путем отбора всей добываемой продукции либо ее части за определенный промежуток времени, разделения отобранной продукции на фазы и последующего измерения объема фаз.

Эти способы трудоемки и не достаточно точны.

Наиболее близким к предлагаемому является известный способ определения газового фактора нефти в критическом режиме истечения газожидкостной продукции. («Методическое руководство по отбору проб и оперативному определению газосодержания и дебита газожидкостной продукции скважин в критическом режиме течения», Тюмень, ООО «Реагент», 2000, с.5-6). По действующим правилам разработки месторождений нефти и газа для каждой скважины составляется и контролируется технологический регламент работы. Периодически измеряются основные параметры эксплуатационного режима работы скважин (ЭРРС): дебит жидкости и нефти, обводненность, плотность разгазированной нефти, воды и газа, диаметр штуцера, буферное и линейное давление и др.

Имея результаты измерения параметров ЭРРС, не сложно получить значение газового фактора нефти из совместного решения уравнений объемного расхода (1) и критической скорости (2).

Уравнение объемного расхода газожидкостной системы:

Уравнение критической скорости Уоллиса-Гужова:

где

Q - объемный расход газожидкостной продукции скважин при критическом давлении и температуре, м3/с;

d - диаметр штуцера, м;

Vк - критическая скорость потока, равная скорости звука, м/с;

Рк - критическое давление, Па;

ρж - плотность жидкости в критической точке, кг/м3;

β - объемная доля газа в критическом режиме течения.

При определении ρж используются плотность разгазированной нефти и воды, плотность газа и коэффициент растворимости газа в нефти, обводненность.

Недостатком метода является ограниченная область его применения, так как при работе скважин в технологическом режиме добычи нефти критическая скорость истечения формируется на малом числе скважин, а установка критических штуцеров требует остановки скважин, что ведет к потере в добыче нефти.

Другим недостатком прототипа является сильная зависимость значения газового фактора от точности определения дебита и обводненности продукции. В частности, при дебите жидкости 30±1 м3/сут и обводненности 0,92±0,04 относительная погрешность в определении газового фактора достигает 21%. При том же дебите и обводненности 0,20±0,01 относительная погрешность определения газового фактора снижается до 6%.

Технической задачей, стоящей перед изобретением, является повышение точности способа определения газового фактора нефти со значительным сокращением времени остановок скважин.

Поставленная задача решается тем, что при определении газового фактора нефти добывающих скважин, включающем измерение плотности нефти, разгазированной при стандартных условиях, и коэффициента растворимости газа, дополнительно измеряют уровень нефти в скважине, затрубное давление и поправочный коэффициент на растворимость газа при средней температуре нефти в затрубном пространстве скважины, а газовый фактор определяют из условия равенства объема выделившегося из нефти газа свободному объему газа в затрубном пространстве, приведенному к стандартным условиям.

На практике для реализации предлагаемого способа измеряют плотность разгазированной нефти и газа, коэффициент растворимости газа в нефти и температуру потока на устье добывающей скважины. Измеряют затрубное давление в скважине (давление газа между эксплуатационной и насосно-компрессорной колоннами труб), динамический уровень и поправочный коэффициент на изменение растворимости газа от температуры нефти на глубине ее частичного разгазирования.

Газовый фактор нефти, приведенный к нормальным условиям, рассчитывается из условия равенства объема газа, выделившегося из нефти в затрубном пространстве скважины, свободному объему газа в затрубном пространстве от устья до динамического уровня.

Поправочный коэффициент γ определяется как отношение коэффициента растворимости при температуре нефти в затрубье к стандартному значению для нефтей данного объекта разработки (см. ОСТ 153-39.2-048-2003, с.5-7, 68).

С достаточной для инженерных целей надежностью газовый фактор нефти определяется выражением (3)

где

G - газовый фактор нефти при стандартных условиях разгазирования, м33;

ΔG - коэффициент растворимости газа в нефти, м3/МПа;

Рзат - затрубное давление, МПа;

Н - динамический уровень, м;

ρон - плотность разгазированной нефти, кг/м3;

γ - поправочный коэффициент на растворимость газа.

Важным преимуществом предлагаемого способа определения газового фактора по эксплутационным режимам работы скважин, по сравнению с известными промысловыми методами, является независимость получаемого значения газового фактора от обводненности продукции скважин. Это существенно повышает надежность определений.

Вторым важным преимуществом предлагаемого способа определения газового фактора является его низкая чувствительность к пенистости нефтей.

Пенистость нефтей приводит к завышению дебита скважин по жидкости и соответственно к занижению газового фактора при объемных методах измерений расхода газа и (или) жидкости. В установившемся режиме работы скважин (при закрытом затрубном пространстве) граница раздела фаз не размывается образованием пены благодаря отсутствию движения газовой фазы в затрубном пространстве, заполненном частично разгазированной нефтью. Это позволяет измерять динамический уровень и затрубное давление с относительной погрешностью не хуже ± 2%.

Значительная часть скважин, особенно малодебитного и обводненного фонда, эксплуатируется в периодическом режиме работы. Скважины останавливают под накопление продукции в стволе и призабойной зоне пласта. В скважине с накопленной продукцией устанавливается определенный статический уровень Нст. При этом объем газа, выделившегося из нефти в процессе накопления равен объему газа, скопившемуся в затрубном пространстве от устья до статического уровня. Это позволяет определить газовый фактор нефти подстановкой в уравнение (3) значения Нст вместо Н.

Очевидно, что в пределах погрешности измерений значения газового фактора, определенные по статическому и динамическому уровням, должны совпадать.

Результаты использования предлагаемого способа определения газового фактора приведены в таблице.

Таблица
Результаты измерения газового фактора нефти
Давление, МПазатрубноеУровень, мГазовый фактор, м33
Номер скважиныбуферноелинейноединамическоестатическоединамическоестатическоединамическоестатическое
4261.281.281.131.2269548625.821.8
4311.181.180.120.257984218.08.4
4300.790.790.691.6886259321.428.6
4361.081.080.911.0866349822.320.5
4381.081.080.661.0862249818.120.5
4440.590.590.611.1361059817.122.8
4572.262.261.212.0572538527.327.2

Газовый фактор определен по скважинам Рассветного, Трифоновского, Гондыревского и Сибирского месторождений ООО «ЛУКОЙЛ-ПЕРМЬ».

Проведено сравнение полученного значения газового фактора с принятым к подсчету запасов. Погрешность определения находится в допустимых пределах.

Способопределениягазовогофакторанефтидобывающихскважин,включающийизмерениеплотностинефти,разгазированнойпристандартныхусловиях,икоэффициентарастворимостигаза,отличающийсятем,чтоизмеряютуровеньнефтивзатрубномпространствескважины,затрубноедавлениеипоправочныйкоэффициентнарастворимостьгазаприсреднейтемпературенефтивзатрубномпространствескважины,агазовыйфакторопределяютизусловияравенстваобъемавыделившегосяизнефтигазасвободномуобъемугазавзатрубномпространстве,приведенномукстандартнымусловиям.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 22.
25.08.2017
№217.015.ce3d

Индукционный скважинный нагреватель

Изобретение относится к нефтяной промышленности и предназначено для теплового воздействия на призабойную зону и нефтяной пласт для предупреждения образования парафиногидратных отложений в зоне перфорации и под насосным оборудованием. Индукционный скважинный нагреватель включает корпус, соосно...
Тип: Изобретение
Номер охранного документа: 0002620820
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.ce91

Способ выбора бурового раствора для строительства наклонных и горизонтальных скважин, пробуренных в неустойчивых глинистых отложениях

Изобретение относится к области бурения скважин в интервалах, представленных неустойчивыми глинистыми отложениями. При осуществлении способа проводят построение геомеханической модели устойчивости ствола по пробуренным на месторождении скважинам путем установления вертикального напряжения,...
Тип: Изобретение
Номер охранного документа: 0002620822
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.d464

Способ использования установки на основе органического цикла ренкина для обеспечения тепловой энергией объектов установки промысловой подготовки нефти

Изобретение относится к установкам промысловой подготовки нефти для нагрева нефтяной продукции скважин и воды с использованием тепла, полученного при сгорании природного, попутного нефтяного газа или их смеси. Способ использования органического цикла Ренкина (ORC-модуля) для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002622143
Дата охранного документа: 13.06.2017
14.11.2018
№218.016.9cb3

Интерактивная автоматизированная система для проведения научных исследований, проектирования и обучения персонала эксплуатации электротехнических комплексов в нефтяной отрасли

Интерактивная автоматизированная система для проведения научных исследований, проектирования и обучения персонала эксплуатации электротехнических комплексов в нефтяной отрасли (далее-система) относится к автоматизированным учебно-тренировочным средствам обучения персонала...
Тип: Изобретение
Номер охранного документа: 0002672163
Дата охранного документа: 12.11.2018
20.02.2019
№219.016.c02d

Тампонажный состав для изоляции зон поглощения технологических жидкостей при бурении скважин

Изобретение относится к тампонажным составам для изоляции и разобщения зон поглощений технологических жидкостей при бурении и креплении скважин в интервалах интенсивного движения пластовых вод, в том числе в зонах соляного карста. Тампонажный состав содержит, мас.%: гипсовое вяжущее -...
Тип: Изобретение
Номер охранного документа: 0002337123
Дата охранного документа: 27.10.2008
11.03.2019
№219.016.db08

Способ строительства многоствольной скважины

Изобретение относится к области бурения скважин, а именно к способу проводки многозабойных нефтяных и газовых скважин. Из основного ствола скважины, обсаженного обсадной колонной, производят бурение нижележащего ствола и закрепляют его хвостовиком. С помощью ориентирующего узла с извлекаемым...
Тип: Изобретение
Номер охранного документа: 0002410513
Дата охранного документа: 27.01.2011
11.03.2019
№219.016.dbf4

Фиброармированный тампонажный материал для цементирования продуктивных интервалов, подверженных перфорации в процессе освоения скважин

Изобретение относится к фиброармированному тампонажному материалу и может найти применение в нефтегазодобывающей промышленности при строительстве скважин, в том числе горизонтальных, для цементирования обсадных колонн в интервалах продуктивных пластов, подверженных перфорационному воздействию в...
Тип: Изобретение
Номер охранного документа: 0002458962
Дата охранного документа: 20.08.2012
11.03.2019
№219.016.dd4d

Тампонажный материал для цементирования скважин с большим газовым фактором

Изобретение относится к области строительства скважин, в частности к тампонажным составам, используемым при цементировании обсадных колонн, преимущественно, с большим газовым фактором. Тампонажный материал содержит портландцемент, оксиэтилцеллюлозу, пластификатор, пеногаситель -...
Тип: Изобретение
Номер охранного документа: 0002447123
Дата охранного документа: 10.04.2012
29.06.2019
№219.017.9d07

Способ эксплуатации трубопроводов с фланцевыми соединениями и межфланцевый компенсатор для его осуществления

Изобретение относится к области машиностроения. Из общей системы трубопроводов выделяют участки трубопроводов с подключенными к ним аппаратами и фланцевой арматурой, подлежащей по правилам эксплуатации периодической замене. В пределах выделенных участков фиксируют фланцевые соединения, которые...
Тип: Изобретение
Номер охранного документа: 0002381407
Дата охранного документа: 10.02.2010
29.06.2019
№219.017.9d78

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002355883
Дата охранного документа: 20.05.2009
Показаны записи 11-18 из 18.
11.03.2019
№219.016.dbf4

Фиброармированный тампонажный материал для цементирования продуктивных интервалов, подверженных перфорации в процессе освоения скважин

Изобретение относится к фиброармированному тампонажному материалу и может найти применение в нефтегазодобывающей промышленности при строительстве скважин, в том числе горизонтальных, для цементирования обсадных колонн в интервалах продуктивных пластов, подверженных перфорационному воздействию в...
Тип: Изобретение
Номер охранного документа: 0002458962
Дата охранного документа: 20.08.2012
11.03.2019
№219.016.dd4d

Тампонажный материал для цементирования скважин с большим газовым фактором

Изобретение относится к области строительства скважин, в частности к тампонажным составам, используемым при цементировании обсадных колонн, преимущественно, с большим газовым фактором. Тампонажный материал содержит портландцемент, оксиэтилцеллюлозу, пластификатор, пеногаситель -...
Тип: Изобретение
Номер охранного документа: 0002447123
Дата охранного документа: 10.04.2012
11.03.2019
№219.016.dd82

Способ технологической обработки ствола скважины, преимущественно пологой и горизонтальной, для удаления кольматирующих образований из призабойной зоны пласта

Изобретение относится к области нефтегазодобычи, в частности к строительству, заканчиванию и капитальному ремонту скважин. Технический результат - повышение эффективности и технологичности удаления кольматирующих образований из призабойной зоны продуктивного ствола скважин после использования...
Тип: Изобретение
Номер охранного документа: 0002467163
Дата охранного документа: 20.11.2012
29.03.2019
№219.016.edc1

Способ разработки битуминозных аргиллитов и песчаников

Изобретение относится к области нефтедобывающей промышленности, а именно к повышению эффективности разработки битуминозных аргиллитов и песчаников. Первоначально бурят скважину, вскрывающую целевой объект, и устанавливают скважинное оборудование, обеспечивающее подъем продукции скважины и...
Тип: Изобретение
Номер охранного документа: 0002683015
Дата охранного документа: 25.03.2019
31.05.2019
№219.017.71c1

Эмульгатор-стабилизатор инвертных эмульсий и способ приготовления инвертно-эмульсионного бурового раствора на его основе

Изобретения относятся к области бурения нефтяных и газовых скважин. Технический результат - сохранение коллекторских свойств продуктивных пластов. Эмульгатор-стабилизатор инвертных эмульсий содержит, мас.%: продукт переработки таллового масла на основе высших жирных кислот 6,2-22,0; калиевый...
Тип: Изобретение
Номер охранного документа: 0002336291
Дата охранного документа: 20.10.2008
09.06.2019
№219.017.7c8f

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002325520
Дата охранного документа: 27.05.2008
29.06.2019
№219.017.9d78

Способ определения дебита продукции скважин

Изобретение относится к области измерения количества жидкости и газа в газожидкостной смеси. Оно может быть использовано как в нефтедобывающей промышленности, так и в тех сферах производства, где необходимо измерить количество жидкости и газа в двухфазном потоке. Обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002355883
Дата охранного документа: 20.05.2009
02.03.2020
№220.018.07dd

Способ определения текущего пластового давления в эксплуатирующейся скважине турнейско-фаменской залежи без ее остановки

Изобретение относится к способам определения текущего пластового давления без остановки скважин на исследование в процессе их эксплуатации. Техническим результатом является повышение точности определения текущего пластового давления при эксплуатирующейся скважине без ее остановки. Способ...
Тип: Изобретение
Номер охранного документа: 0002715490
Дата охранного документа: 28.02.2020
+ добавить свой РИД