×
09.05.2019
219.017.4ba6

ПОЛИЭТИЛЕНОВАЯ ФОРМОВОЧНАЯ МАССА И ИЗГОТОВЛИВАЕМАЯ ИЗ НЕЕ ТРУБА С УЛУЧШЕННЫМИ МЕХАНИЧЕСКИМИ СВОЙСТВАМИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
02237686
Дата охранного документа
10.10.2004
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к полиэтиленовой формовочной массе с бимодальным распределением молярной массы и к высокопрочной трубе из этой формовочной массы. Полиэтиленовая формовочная масса образована в двух последовательно соединенных стадиях полимеризации и имеет общую плотность большую, чем 0,958 г/см, и индекс расплава MFI менее чем 0,2 дг/мин. Она содержит низкомолекулярный гомополимер этилена в количестве 35-65 мас.% с коэффициентом вязкости VZ 40-90 см/г, индексом расплава MFI 40-2000 дг/мин и плотностью, большей или равной 0,965 г/см, и высокомолекулярный этиленовый сополимер в количестве 35-65 мас.% с коэффициентом вязкости VZ 500-2000 см/г, индексом расплава MFI 0,02-0,2 дг/мин и плотностью 0,922-0,944 г/см. Фракция полиэтилена, полученная при растворении в п-ксилоле полиэтиленовой формовочной массы, при температуре 78°С ± 3 К при проведении препаративного TREF-анализа, имеет среднюю молярную массу большую или равную 200000 г/моль. Формовочная масса согласно исправлению обладает свойствами длительного срока действия, более высокой жесткостью. Труба из формовочной массы согласно изобретению имеет стойкость к образованию трещин вследствие внутренних напряжений более 1500 ч, вязкость разрушения большую или равную 9 мДж/мми модуль ползучести при изгибе, измеренный согласно ДИН 54852-24, больший или равный 1350 Н/мм . Она особенно пригодна для транспортирования газа и воды. 2 н. и 6 з.п. ф-лы, 1 ил., 2 табл.
Реферат Свернуть Развернуть

Настоящее изобретение относится к полиэтиленовой формовочной массе с бимодальным распределением молярной массы и к высокопрочной трубе из этой формовочной массы.

Полиэтилен в большом объеме используется для изготовления труб, например, для систем транспорта газа и воды, так как для таких труб требуется материал с особо высокой механической прочностью, высокой коррозионной стойкостью и абсолютно надежным продолжительным сроком службы. Многочисленные публикации описывают материалы с самыми разными свойствами и способы их изготовления.

Из ЕР-А-603,935 уже известна формовочная масса на основе полиэтилена, которая имеет бимодальное распределение молярной массы и которая, кроме того, должна быть пригодной для изготовления труб. Трубы, изготовленные из формовочных масс по данному источнику, оставляют желать лучшего в отношении их предельно допускаемой длительной нагрузки внутренним давлением, стойкости к образованию трещин вследствие внутренних напряжений, ударной вязкости при низких температурах и сопротивления к быстрому росту трещин.

С целью получения труб с уравновешенными механическими свойствами и тем самым с оптимальной комбинацией свойств необходимо применять материал, имеющий еще более широкое распределение молярной массы. Такой материал описан в патенте США US-PS 5,338,589 и изготавливается с высокоактивным катализатором, который известен из WO 91/18934 и в котором в качестве гелеобразной суспензии применяется алкоголят магния. Неожиданно было обнаружено, что применение этого материала в фасонных изделиях, в частности, в трубах, обеспечивает одновременное улучшение обычно противоположных в частично кристаллических термопластах свойств жесткости и склонности к ползучести, с одной стороны, и стойкости к образованию трещин вследствие внутренних напряжений и вязкости, с другой стороны.

Из патента ЕР-А-0 739 937 уже известна труба, обладающая механическими свойствами, которые удовлетворяют самым высоким требованиям и которые привели к классификации этой трубы в класс качества "РЕ 100" согласно ISO/DIS 9080.

Задачей настоящего изобретения было создание полиэтиленовой формовочной массы, с которой можно реализовать еще более высокую прочность изготовленных из нее труб по сравнению с известным материалом труб класса прочности РЕ 100 согласно ISO/DIS 9080.

Данная задача решается с помощью формовочной массы согласно пункту 1. Кроме того, изобретение относится к трубе из данной формовочной массы с отличными механическими свойствами и ее применению для строительства газопроводов и водопроводов.

Полиэтиленовая формовочная масса согласно изобретению имеет при температуре 23°С плотность ≥0,948 в качестве природного материала, то есть без подкрашивающих добавок, и ≥0,959 г/см3 в качестве подкрашенного черным цветом материала с содержанием сажи 2-5 вес. % от общего веса подкрашенного черным цветом материала, и она имеет широкое бимодальное распределение, при котором отношение веса низкомолекулярной доли к весу высокомолекулярной доли составляет 0,5-2,0, предпочтительно 0,8-1,8. Полиэтилен может содержать небольшие доли до 5 вес. % других мономерных единиц с 4-10 атомами углерода. Примерами таких сомономеров являются 1-бутен, 1-пентен, 1-гексен или 4-метилпентен-1.

Бимодальность можно описать как критерий для положения центоов тяжести обоих распределений отдельных молярных масс с помощью коэффициентов вязкости (VZ) по нормам ISO/R 1191 полимеров, образованных в двух последовательно включенных стадиях полимеризации. При этом VZ1 образованного в первой стадии полимеризации низкомолекулярного полиэтилена составляет 40-90 см3/г, a VZoбщ конечного продукта находится в пределах 300-450 см3/г. VZ2 образованного во второй стадии полимеризации высокомолекулярного полиэтилена можно рассчитать по следующей математической формуле

причем w1 обозначает весовую долю образованного в первой стадии полимеризации низкомолекулярного полиэтилена, измеренную в вес. % от общего веса образованного в обеих стадиях полиэтилена с бимодальным распределением молярной массы. Для VZ2 расчетное значение обычно находится в пределах 500-2000 см3/г.

Формовочная масса согласно изобретению обладает свойствами длительного срока действия, которые превышают требования к классу качества РЕ 100 согласно нормам ISO/DIS 9080, составляющего 10,0 МПа по 50 a LCL (нижний критический предел надежности), определенного методом экстраполяции. Неожиданным образом полиэтилен согласно изобретению достигает при необходимой более высокой жесткости и более высоком напряжении пластического течения чрезвычайно высокого сопротивления медленному росту трещин. Эта высокая стойкость к образованию трещин вследствие внутренних напряжений обнаруживается в том, что при длительном испытании внутренним давлением LTHS (длительная гидростатическая нагрузка) на трубах из формовочной массы согласно изобретению в течение периода времени 33000 часов при температуре 80°С не могут наблюдаться хрупкие изломы.

При испытании LTHS срок службы труб без хрупкого излома определяется экстраполяцией 50 годами. По причине чрезвычайно высокой стойкости к образованию трещин вследствие внутренних напряжений, достигаемой формовочной массой согласно изобретению, характеристика тягучести проходит в диаграмме время-напряжение, с помощью которой осуществляется экстраполирование на срок службы 50 лет, очень плоско. Поэтому по этому методу испытаний труб из формовочной массы согласно изобретению при температуре испытания 23°С и сроке службы 50 лет получается внутреннее давление 12,5 МПа, что приводит к новому классу качества РЕ 125.

Кривая экстраполяции при 23°С математически описывается следующим уравнением:

σ=К·t

выхода из строя
.

Для стандартных значений К=15,6 и η=-0,017 из экстраполяцией для труб из формовочной массы согласно изобретению вытекают следующие значения:

Твыхода из строя, σ 10 ч 15,0; 10000 ч 13,3; 50 лет 12,5.

Полиэтилен получают полимеризацией мономеров в суспензии, растворе или газовой фазе при температурах 20-120°С, давлении 2-60 бар и в присутствии катализатора Циглера, состоящего из соединения металла переходной группы и алюминийорганическсго соединения. Полимеризация проводится в две последовательные стадии, причем молярная масса полиэтилена в каждой стадии регулируется с помощью водорода.

Полиэтиленовая формовочная масса согласно изобретению может содержать наряду с полиэтиленом другие добавки. Такими добавками являются, например, термостабилизаторы, антиокислители, поглотители ультрафиолетовых лучей, светоста-билизаторы, дезактиваторы, разрушающие пероксид соединения, основные состабилизаторы в количествах 0-10 вес. %, предпочтительно 0-5 вес. %, но и также наполнители, усилители, пластификаторы, антиадгезивы, эмульгаторы, пигменты, оптические осветители, антипирены, антистатики, агенты вспенивания или их комбинации в общем количестве 0-50 вес. %.

Трубу согласно изобретению изготавливают, проводя пластификацию полиэтиленовой формовочной массы вначале в экструдере при температуре 200-250°С и затем выдавливанием через кольцевое сопло и охлаждением. Трубы согласно изобретению в общем пригодны для всех классов давления согласно DIN 8074.

Для переработки труб можно применять как обычные одношнековые экструдеры с гладкой зоной загрузки, так и высокопроизводительные экструдеры с цилиндром, снабженным прецизионными пазами и зоной загрузки с эффективной подачей. Шнеки выполняются обычно как декомпрессионные шнеки длиной 25-30 D (D=⊘). Декомпрессионные шнеки имеют разгрузочную зону, в которой выравниваются температуры в расплаве и в которой путем сдвигов должны уменьшаться напряжения релаксации.

Поступающий из экструдера расплав вначале распределяется через расположенные по конусу отверстия по кольцевому поперечному сечению и затем подается через спиральный распределитель или ситчатый короб в комбинированное устройство стержень/мундштук. Дополнительно при необходимости могут быть встроены диафрагмы или другие конструктивные элементы для гомогенизации потока расплава перед выходным отверстием мундштука.

Калибрование и охлаждение проводятся для слишком больших диаметров труб целесообразно посредством вакуумного калибрования. Собственно формование производится калибрующими гильзами с пазами, которые для лучшего отвода тепла изготовлены из цветного металла. При этом поданная во входной канал водяная пленка обеспечивает быстрое охлаждение поверхности трубы ниже точки плавления кристаллита и дополнительно служит в качестве масляной пленки для уменьшения сил трения. Общая длина L участка охлаждения определена с учетом того, что расплав с температурой 220°С должен быть охлажден с помощью воды с температурой 15-20°С настолько, чтобы температура внутренней поверхности трубы составила 85°С.

Стойкость к образованию трещин вследствие внутренних напряжений представляет собой признак, который уже известен из ЕР-А 436 520. На процесс медленного роста трещин могут оказать существенное влияние молекулярные структурные параметры, как например, распределение молярных масс и сомономеров. Количество так называемых связанных молекул определяется прежде всего длиной цепи. Морфология частично кристаллических полимеров устанавливается дополнительно встраиванием сомономеров, так как на толщину кристаллитных пластин может повлиять встраивание короткоцепочечных разветвленностей. Это означает, что количество связанных молекул, так называемых "Tie-молекул", в сополимерах больше, чем в гомополимерах с сопоставимой длиной цепи.

Стойкость к образованию трещин вследствие внутренних напряжений трубы согласно изобретению определяется по методу внутренних измерений. Этот лабораторный метод описан М. Фляйсснером в Kunststoffe 77 (1987), с. 45 и сл. Данная публикация показывает, что между определением медленного роста трещин в испытании на длительную прочность стержневых образцов с надрезами по кругу и хрупким коленом по ISO 1167 имеется связь. Сокращение времени до отказа достигается путем сокращения времени инициирования трещин надрезами (1,6 мм/лезвие для бритвы) в этиленгликоле в качестве среды, способствующей образованию трещин вследствие внутренних напряжений, при температуре 80°С и напряжении при растяжении 5 МПа. Изготовление образцов производится выпиливанием трех испытуемых образцов с габаритами 10×10×90 мм из пластины, толщиной 10 мм, изготовленной прессованием. Испытуемые образцы надрезаются вокруг посередине лезвием для бритвы в выполненном для этих целей устройстве для надреза (см. рис.5 в вышеуказанной публикации). Глубина надреза составляет 1,6 мм.

Вязкость разрушения трубы согласно изобретению определяется также по методу внутренних измерений на стержневых образцах с габаритами 10×10×80 мм, которые выпиливают из пластины, изготовленной прессованием, толщиной 10 мм. В уже упомянутом устройстве для надреза лезвием для бриты в середине производят надрезы в шести таких стержневых образцах. Глубина надреза составляет 1,6 мм. Проведение измерений в значительной мере соответствует процедуре измерения по Шарпи согласно ISO 179 с измененными испытуемыми образцами и измененной динамической геометрией (расстояние между опорами). Все испытуемые образцы устанавливают в заданный температурный режим на 0°С на 2-3 часа. Затем один испытуемый образец плавно укладывают на опору маятникового копра согласно ISO 179. Расстояние между опорами составляет 60 мм. Запускают падение 2 J молота, причем угол падения устанавливают на 160°, длину маятника - на 225 мм и скорость удара - на 2,93 м/с. Для оценки результатов измерения рассчитывают отношение из затраченной энергии удара и исходной площади поперечного сечения на надрезе аFM в мДж/мм2. При этом только значения при полном изломе и изломе шарнира могут служить основанием для общего среднего значения (см. ISO 179).

Ударную вязкость измеряют согласно ISO 179. Размер образца составляет 10×4×80 мм, причем V-образный надрез выполняют в виде канавки с углом 45°, глубиной 2 мм и радиусом дна надреза 0,25 мм.

Модуль ползучести при изгибе измеряют согласно DIN 54852-Z4 как значение, полученное при испытании в течение одной минуты.

Тест S4 (Small Scale Steady State - Test) служит для того, чтобы определить сопротивление трубы быстрому росту трещин и проводится на трубах PN 10 диаметром 110 мм. Точный способ описан в ISO/DIS 13477. Этим методом определяют критическое давление рс в бар, выше которого находящаяся под этим давлением рс труба разрывается продольно по всей длине.

Нижеследующие примеры должны яснее представить изобретение специалисту.

Пример 1 (согласно изобретению)

Полиэтиленовая формовочная масса была изготовлена с катализатором Циглера и по положению WO 91/18934 с соблюдением следующих указанных в табл. 1 условий эксплуатации

Изготовленная таким образом полиэтиленовая формовочная масса имела индекс расплава MFI5/190°C, равный 0,18 дг/мин, измеренный согласно ISO 11 33, и плотность d 0,950 г/см3. Полиэтилен для еще более лучшей характеристики был подвержен препаративному анализу TREF (фракционирование сепарацией при повышении температуры). Этот метод анализа является очень полезным инструментом для определения распределения сомономеров в частично кристаллическом полиэтилене и был опубликован авторами L. Wild и T. Ryle под заголовком: "Crystal-lyzation distribution in Polymers: A new analytical technique" в Poly. Prep. Am Chem. Soc., - Polym. Chem Div., 18, 182 (1977). По этому методу анализа исследуемый полимер растворяют в п-ксилоле, осаждают на неорганической подложке и с нее постепенно при постоянно возрастающих температурах разделяют с п-ксилолом, причем при более низких температурах растворяются менее кристаллические доли и при более высоких температурах растворяются более кристаллические доли. Таким образом можно разделять частично кристаллический полимер на различные количественные доли в зависимости от толщины пластинок кристаллита. Затем различные фракции можно, со своей стороны, снова исследовать по методу GPC (гель-проникающая хроматография) на распределение их молярных масс.

Диаграмма (см. чертеже) показывает результат комбинированного TREF-GPC-анализа полиэтиленовой формовочной массы.

Полиэтилен, изготовленный по чертежу, был сначала растворен в п-ксилоле (точка кипения: 138°) и затем осажден посредством охлаждения на подложке хромосорб Р. Затем путем элюирования были образованы фракции при температурах 60, 70, 78, 83, 86, 89, 93, 100 и 110°С. Затем с фракцией при 78°С±3 К и растворенной в ней долей полимера проведен GPC-анализ. Пик 1 показывает растворимую при 78°С, низкомолекулярную, высококристаллическую фракцию полиэтилена с небольшой толщиной пластинок кристаллита, а пик 2 вызывается долей с большей молярной массой, но одновременно с высокой долей встроенного сомономера и тем самым снова с меньшей кристалличностью. Эта подпадающая под пик 2 доля продукта несет ответственность за большое количество так называемых "tie-молекул" между пластинками кристаллита и тем самым за чрезвычайно высокую стойкость к образованию трещин вследствие внутренних напряжений трубы, изготовленной из формовочной массы согласно изобретению.

Полиэтилен, изготовленный по чертежу как описано выше, был пластифицирован в экструдере диаметром 48 мм и длиной, соответствующей 24,4-кратному значению диаметра (117,12 см) при температуре 227°С и затем экструдирован через кольцевое сопло экструдера с наружным диаметром 32,1 мм и через дорн диаметром 26,5 мм в трубу диаметром 32,1 мм и толщиной стенки 3,08 мм с помощью вакуумного калибрования. Охлаждение проводилось в охлаждающей ванне длиной 3, температура в которой поддерживалась на 15°С. Измеренные на готовой трубе свойства указаны в табл. 2.

Сравнительный пример

Была изготовлена труба из полиэтилена в соответствии с данными из примера 1 ЕР-А-739 937. Измеренные на трубе свойства также составлены в табл. 2.

Сокращения физических свойств в табл. 2 имеют следующее значение:

- ВКМ = модуль ползучести при изгибе, измеренный согласно ISO 54852-Z4 в Н/мм2 как значение, полученное при испытании в течение одной минуты,

- BZ = вязкость разрушения, измеренная по вышеописанному методу внутренних измерений при 0°С в мДж/мм2,

- KSZISO = ударная вязкость, измеренная согласно ISO 179/DIN 53453 в мДж/мм2 при -20°С и при +23°С,

- SRB = стойкость к образованию трещин вследствие внутренних напряжений, измеренная по методу внутренних измерений по М. Фляйсснеру в часах,

- VBK = способность к переработке, измеренная как производительность экструдера в экструдере с диаметром D 48 мм и длиной L, составляющей 24,4·D при постоянной скорости шнеков 80 мин-1 в кг/ч,

- рс = сопротивление быстрому росту трещин, измеренное по S4-тесту в бар на трубах класса давления PN 10 с диаметром 110 мм.

Измеренные значения четко показывают, что труба согласно изобретению имела лучшие прочностные свойства и при изготовлении могла лучше обрабатываться.

1.Полиэтиленоваяформовочнаямасса,предназначеннаядляизготовлениятрубсбимодальнымраспределениеммолярноймассы,образованнаявдвухпоследовательносоединенныхстадияхполимеризациииимеющаяобщуюплотностьбольшую,чем0,958г/см,ииндексрасплава,определенныйпри190°Синагрузке5кг,составляющийменеечем0,2дг/мин,содержитнизкомолекулярныйгомополимерэтиленавколичестве35-65мас.%ивысокомолекулярныйэтиленовыйсополимервколичестве35-65мас.%,отличающаясятем,чтонизкомолекулярныйгомополимерэтиленаимееткоэффициентвязкостиот40до90см/гииндексрасплава,определенныйпри190°Синагрузке2,16кг,вдиапазоне40-2000дг/мин,иплотностьбольшуюилиравную0,965г/см,авысокомолекулярныйэтиленовыйсополимерпредставляетсобойсополимерэтиленаисомономерас4-10атомамиуглеродавколичествеот2,5до4мас.%,иимееткоэффициентвязкости500-2000см/г,индексрасплава,определенныйпри190°Синагрузке5кг,0,02-0,2дг/миниплотность0,922-0,944г/см,приэтомфракцияполиэтилена,полученнаяприрастворениивп-ксилолеполиэтиленовойформовочноймассы,притемпературе78°С±3КприпроведениипрепаративногоTREF-анализа,имеетсреднююмолярнуюмассу,большуюилиравную200000г/моль.12.Полиэтиленоваяформовочнаямассапоп.1,отличающаясятем,чтонизкомолекулярныйгомополимерэтиленаформовочноймассыимеетиндексрасплава,определенныйпри190°Синагрузке2,16кг,вдиапазоне200-800г/10мин,предпочтительно250-450г/10мин.23.Полиэтиленоваяформовочнаямассапоп.1илип.2,отличающаясятем,чтоонаимеетиндексрасплава,определенныйпри190°Синагрузке5кг,меньшийилиравный0,19дг/мин.34.Трубаизполиэтиленовойформовочноймассы,отличающаясятем,чтоонаизготовленаизполиэтиленовойформовочноймассыпопп.1-3,имеетстойкостькобразованиютрещинвследствиевнутреннихнапряженийболее1500ч,вязкостьразрушения,большуюилиравную9мДж/мм,имодульползучестиприизгибе,измеренныйсогласноДИН54852-Z4,большийилиравный1350Н/мм.45.Трубапоп.4,отличающаясятем,чтоонаимеетударнуювязкость,измереннуюсогласноISO179(ДИН53453)при-20°С,поменьшеймере,25мДж/мм,ипри+23°С,поменьшеймере,40мДж/мм.56.Трубапоодномуизпп.4и5,отличающаясятем,чтоонаимеетсопротивлениебыстромуростутрещин,измеренноесогласноISO/DIS13477натрубеклассадавленияPN10сдиаметром110мм(S4-тест),большееилиравное20бар.67.Трубапоодномуизпп.4-6,отличающаясятем,чтоонапредназначенадлятранспортированиягазов,вчастности,природногогаза.78.Трубапоодномуизпп.4-7,отличающаясятем,чтоонапредназначенадлятранспортированияводы.8
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
27.09.2013
№216.012.6f2d

Этиленовые терполимеры

Настоящее изобретение относится к сополимерам этилена и способу их получения. Описан сополимер этилена и, по меньшей мере, одного первого α-олефинового сомономера, имеющего n атомов углерода, и, по меньшей мере, одного второго α-олефинового сомономера, имеющего (n-1) атомов углерода, причем n...
Тип: Изобретение
Номер охранного документа: 0002494112
Дата охранного документа: 27.09.2013
20.12.2013
№216.012.8d22

Способ перехода между несовместимыми системами катализаторов полимеризации олефинов

Описан способ перехода от первой ко второй каталитической системе для полимеризации олефинов в одном реакторе, где первая каталитическая система несовместима со второй каталитической системой. Способ включает стадии: a) остановки первой реакции полимеризации олефинов, выполняемой в присутствии...
Тип: Изобретение
Номер охранного документа: 0002501813
Дата охранного документа: 20.12.2013
20.03.2014
№216.012.ac23

Ударопрочная композиция лпэнп и полученные из нее пленки

Изобретение относится к новому полиэтилену низкой плотности, имеющему мультимодальное распределение сомономера. Описана пленка, полученная экструзией с раздувом. Пленка включает полиэтилен, содержащий по меньшей мере один C-C-олефиновый сомономер, полимеризованный с этиленом. Полиэтилен имеет...
Тип: Изобретение
Номер охранного документа: 0002509782
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.afbc

Способ перехода между несовместимыми системами катализаторов полимеризации олефинов

Изобретение относится к способу перехода между несовместимыми системами катализаторов полимеризации олефинов в одном реакторе. Описан способ перехода от системы катализатора Циглера-Натта к системе катализатора Phillips для полимеризации олефинов в одном реакторе, где способ включает стадии: a)...
Тип: Изобретение
Номер охранного документа: 0002510703
Дата охранного документа: 10.04.2014
27.05.2014
№216.012.c8c8

Ударопрочная композиция полиэтилена низкой плотности (lldpe) и изготовленные из нее пленки

Изобретение относится к полимеру этилена с низкой плотностью с мультимодальным сомономерным распределением, способу его получения, а также к формованным изделиям, в том числе к пленкам, получаемым из указанного полимера. Мультимодальный полиэтилен обладает шириной молекулярно-массового...
Тип: Изобретение
Номер охранного документа: 0002517166
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cfc7

Полимеризация этилена в реакторе высокого давления с улучшенной подачей инициатора

Заявлен способ получения гомополимеров или сополимеров этилена в реакторе высокого давления, по меньшей мере, с двумя пространственно разделенными пунктами введения инициатора путем полимеризации этилена и, возможно, дополнительных мономеров в присутствии по меньшей мере двух различных смесей...
Тип: Изобретение
Номер охранного документа: 0002518962
Дата охранного документа: 10.06.2014
10.07.2014
№216.012.dbb3

Полимер этилена, обладающий повышенной стойкостью к термоокислительной деструкции в присутствии жидких топлив, в том числе биодизельного топлива, и кислорода, и пластмассовый топливный бак, изготовленный из подобного полимера

Изобретение относится к применению стабилизированной композиции на основе гомо- или сополимера этилена, содержащей сочетание по меньшей мере двух пространственно-затрудненных аминных соединений, для изготовления пластмассовых изделий для транспортировки и хранения эфиров растительных масел,...
Тип: Изобретение
Номер охранного документа: 0002522021
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dd55

Многостадийный способ полимеризации этилена

Изобретение относится к суспензионному способу получения этиленового полимера, имеющего соотношение потока расплава F/P выше чем 25. Способ проводят в две или более стадии полимеризации при температурах от 60 до 120°C. По меньшей мере две из двух или более стадий полимеризации проводят в...
Тип: Изобретение
Номер охранного документа: 0002522439
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e15d

Способ  улучшения стойкости к термоокислительной деструкции труб  и трубы, полученные таким  способом

Группа изобретений относится к трубе и способу ее изготовления. Трубы изготовлены стойкими к термоокислительной деструкции при нахождении данной трубы в длительном контакте с жидкостями, содержащими дезинфицирующие вещества, обладающие окислительным действием. Формовочная композиция для труб...
Тип: Изобретение
Номер охранного документа: 0002523479
Дата охранного документа: 20.07.2014
27.03.2015
№216.013.350b

Полиэтиленовая композиция и полученные из нее готовые изделия

Группа изобретений относится к полиэтиленовым композициям для пленок или литых изделий. Композиция имеет индекс текучести расплава при 5 кг/190°С (MI) от 0,25 до 3 г/10 мин, M более чем 2000000 г/моль и менее чем 370000 г/моль и значение индекса Hostalen (HI) от 0,18 до 18. Причем значении...
Тип: Изобретение
Номер охранного документа: 0002545063
Дата охранного документа: 27.03.2015
Показаны записи 1-10 из 10.
25.08.2017
№217.015.a58f

Полиэтиленовая композиция с высокой степенью набухания

Изобретение относится к полиэтиленовой композиции, предназначенной для изготовления формованных изделий различных видов. Композиция имеет плотность от 0,953 до 0,960 г/см и соотношение MIF/MIP от 17 до 29, где MIF индекс текучести расплава при 190°C с нагрузкой в 21,60 кг, a MIP индекс...
Тип: Изобретение
Номер охранного документа: 0002607625
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.cf5d

Полиэтиленовая композиция с высокими механическими свойствами

Изобретение относится к полиэтиленовой композиции, предназначенной для изготовления экструдированных изделий, в том числе таких как трубы. Композиция имеет плотность от 0,945 до 0,955 г/см, соотношение MIF/MIP от 30 до 45, индекс кристаллизации при сдвиге SIC от 1,0 до 2,5 и индекс ветвления...
Тип: Изобретение
Номер охранного документа: 0002621045
Дата охранного документа: 31.05.2017
25.08.2017
№217.015.d186

Полиэтиленовая композиция с высокой степенью набухания

Изобретение относится к полиэтиленовой композиции, подходящей для приготовления формованных изделий различных видов. Описана полиэтиленовая композиция для формованных изделий, имеющая следующие характеристики: 1) плотность от 0,945 до 0,952 г/см, предпочтительно от 0,948 до 0,951 г/см,...
Тип: Изобретение
Номер охранного документа: 0002621807
Дата охранного документа: 07.06.2017
28.06.2018
№218.016.6863

Способ полимеризации этилена с усовершенствованной системой подачи этилена

Изобретение относится к способу полимеризации этилена. Описан способ получения полиэтилена путем полимеризации в этиленовой суспензии в одном или нескольких С-С альфа-олефинах. Полимеризация проходит при температуре 60-95°С и давлении 0,15-3 МПа. Полимеризация осуществляется в присутствии...
Тип: Изобретение
Номер охранного документа: 0002658836
Дата охранного документа: 25.06.2018
16.11.2018
№218.016.9e04

Способы суспензионной полимеризации в каскаде реакторов с высокой чистотой этилена

Изобретение относится к способу суспензионной полимеризации для получения полиэтилена в каскаде реакторов из двух или нескольких реакторов полимеризации этилена. Способ включает подачу в реактор полимеризации количеств этилена, катализатора Циглера, первичного алкилалюминия и разбавителя....
Тип: Изобретение
Номер охранного документа: 0002672469
Дата охранного документа: 15.11.2018
26.01.2019
№219.016.b490

Способ получения полиолефиновой композиции

Изобретение относится к способу непрерывного получения полиолефиновой композиции. Способ непрерывного получения в экструдере полиолефиновой композиции, содержащей: полиолефин и технический углерод, включает следующие стадии. Подача в перемешивающее устройство полиолефина в виде порошка...
Тип: Изобретение
Номер охранного документа: 0002678264
Дата охранного документа: 24.01.2019
31.01.2019
№219.016.b5ab

Технологический процесс полимеризации этилена с повышенной эффективностью работы теплообменника

Изобретение относится к процессу полимеризации этилена. Описан технологический процесс производства полиэтилена путем суспензионной полимеризации этилена и, необязательно, одного или нескольких С-С альфа-олефинов. Полимеризацию проводят при температуре 60-95°С и давлении 0,15- 3 МПа в...
Тип: Изобретение
Номер охранного документа: 0002678444
Дата охранного документа: 29.01.2019
16.02.2019
№219.016.bb62

Способ управления технологическим процессом полимеризации этилена

Способ управления суспензионной полимеризацией для получения полиэтилена. Полиэтилен получают в каскаде реакторов полимеризации реакцией катализатора Циглера, этилена и либо водорода, либо, в качестве сомономера(ов), одного или нескольких С-С альфа-олефинов, или водорода и одного или нескольких...
Тип: Изобретение
Номер охранного документа: 0002679899
Дата охранного документа: 14.02.2019
08.04.2019
№219.016.fe6d

Способы управления подачей алкила алюминия в технологический процесс суспензионной полимеризации

Изобретение относится к способу суспензионной полимеризации получения полиэтилена. В реактор подают этилен, катализатор Циглера, свежий алкил алюминия и разбавитель, отобранный из свежего разбавителя, повторно поданной суспензионной среды или их смесей и, необязательно, количеств водорода, и,...
Тип: Изобретение
Номер охранного документа: 0002684272
Дата охранного документа: 05.04.2019
03.08.2019
№219.017.bc9b

Способ получения полиолефиновой композиции

Изобретение относится к способу непрерывного получения гранулированной расплавленной полиолефиновой композиции, содержащей бимодальный или мультимодальный полиолефин и одну или несколько присадок. Способ осуществляют в экструдере, оборудованном, по меньшей мере, одним бункером, путем подачи в...
Тип: Изобретение
Номер охранного документа: 0002696257
Дата охранного документа: 01.08.2019
+ добавить свой РИД