×
09.05.2019
219.017.49af

Результат интеллектуальной деятельности: СПОСОБ АКТИВАЦИИ НАНОПОРОШКА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов. Нанопорошок алюминия, полученны электрическим взрывом алюминиевой проволоки, насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют в воздушной атмосфере переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут. Обеспечивается повышение удельного теплового эффекта окисления порошка, а также расширение арсенала средств активации. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к порошковой металлургии, а именно к специальной обработке для улучшения свойств нанопорошков алюминия и может быть использовано при приготовлении твердых ракетных топлив, пиротехнических составов.

Известен способ активации нанопорошка алюминия, полученного методом электрического взрыва алюминиевой проволоки [RU 2637732 С1, МПК B22F 1/60 (2006.01), B82Y30/00 (2011.01), опубл. 06.12.2017], включающий пассивацию нанопорошка алюминия воздухом, содержащим пары воды с последующим его нагревом до 300-400°С в атмосфере воздуха со скоростью нагрева от 10 до 30°С/мин. Нанопорошки алюминия выдерживают при этой температуре в течение 30 мин.

Известен способ активации микро- и нанопорошков алюминия [RU 2657677 С1, МПК B22F 1/00 (2006.01), В82В 1/00 (2006.01), B82Y 40/00 (2011.01), опубл. 14.06.2018], выбранный в качестве прототипа, заключающийся в том, что микро- и нанопорошки алюминия, облучают СВЧ-излучением частотой 2,8 ГГц в атмосфере воздуха импульсами длительностью 25 нс, с частотой следования 25 Гц в течение не менее 10 минут с плотностью мощности 8 кВт/см.

Этот способ сложен и для его реализации необходимо использование мощных источников СВЧ-излучения.

Техническим результатом предлагаемого изобретения является расширение арсенала средств активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки.

Способ активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, также как в прототипе, включает воздействие высокоэнергетическим излучением в воздушной атмосфере.

Согласно изобретению нанопорошок алюминия насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут.

Емкость может быть выполнена из полипропилена.

Предложенный способ обеспечивает увеличение положительных зарядов внутренних частей наночастиц алюминия, что приводит к увеличению удельного теплового эффекта окисления активированных нанопорошков алюминия на 22,45-32,98% по сравнению с исходными неактивированными нанопорошками алюминия. Для осуществления способа не требуется использование дорогостоящего СВЧ оборудования.

На фиг. 1 показана принципиальная схема установки для активации нанопорошка алюминия.

На фиг. 2 показана термограмма нанопорошка алюминия, не подвергнутого обработке переменным магнитным полем (образец №1), где кривая 1 отражает изменение веса образца при нагревании, кривая 2 указывает температуру в ячейке термоанализатора при проведении термоанализа, кривая 3 - разность температур между образцом и эталоном прибора, кривая 4 - тепловой поток при нагревании.

На фиг. 3 показана термограмма нанопорошка алюминия, после обработки переменным магнитным полем (образец №3) в течение 20 мин, где кривая 1 отражает изменение веса образца при нагревании, кривая 2 указывает температуру в ячейке термоанализатора при проведении термоанализа, кривая 3 - разность температур между образцом и эталоном прибора, кривая 4 - тепловой поток при нагревании.

В таблице 1 представлены условия проведения активации нанопорошка алюминия марки Alex и результаты термического анализа.

Для осуществления способа использовали установку (фиг. 1), внутри заземленного корпуса 1 которой расположен выключатель 2, подключенный к источнику напряжения. Выключатель 2 соединен с входными выводами автотрансформатора 3, выходной вывод которого соединен с одним концом первичной обмотки понижающего трансформатора 4. Другой конец первичной обмотки понижающего трансформатора 4 через скользящий (щеточный) контакт соединен с обмоткой автотрансформатора 3. Параллельно первичной обмотке понижающего трансформатора 4 подключен вольтметр 5. Параллельно обмотке автотрансформатора 3 подключена индикаторная лампа 6. Выводы вторичной обмотки понижающего трансформатора 4 соединены между собой медной шиной 7 прямоугольного сечения шириной 60 мм и толщиной 3 мм, которая выходит за пределы корпуса 1 установки.

На шине 7 установлен трансформатор тока 8 типа ТТИ-60 с коэффициентом трансформации равным 200, к выводам которого подключен стрелочный амперметр 9 типа Э377.

Использовали нанопорошок алюминия марки Alex, с площадью удельной поверхности 14 м2/г, полученный методом электрического взрыва проводника. Нанопорошок 10 засыпали в пробирки 11, объемом 2 см изготовленные из полипропилена на высоту 5, 15, 30 мм (могут быть использованы емкости другого размера и формы). Уровень нанопорошка алюминия 10 в пробирке 11 измеряли с помощью измерительной линейки. Пробирки 11 закрыли полипропиленовыми крышками.

Каждую пробирку 11 с нанопрошком алюминия 10 размещали на шине 7 с помощью каркаса из картона 12 таким образом, чтобы дно пробирки 11 касалась шины 7.

С помощью выключателя 2 подавали напряжение на вход автотрансформатора 6, при этом свечение индикаторной лампы 6 свидетельствовало о наличии напряжения на входе автотрансформатора 6. При вращении ручки автотрансформатора 6 увеличивали напряжение на входе понижающего трансформатора 4, которое измерялось вольтметром 5, при этом увеличивалась сила тока в шине 7. С помощью понижающего трансформатора 4 создавали силу тока в 50, 100, 300 или 600 А в шине 7, при этом понижающий трансформатор 4 предохранял автотрансформатор 6 и питающую электрическую сеть от перегрузки по току. Силу тока в шине 7 контролировали с помощью амперметра 9, подключенного к трансформатору тока 8. Активацию нанопорошков алюминия 10 проводили в течение 10, 20 или 40 мин. Время воздействия переменным магнитным полем частотой 50 Гц измеряли с помощью электронного секундомера.

Образцы нанопорошка алюминия подвергали дифференциальному термическому анализу, используя термоанализатор Q600 SDT. Точность измерения температуры составляла 0,001°С, калориметрическая точность ±2%, масса навески 5,9-6,7 мг., мг, скорость нагрева 102С/с, атмосфера - воздух.

Результат увеличения удельного теплового эффекта окисления каждого активированного образца нанопорошка алюминия определяли как разность между удельным тепловым эффектом активированного образца и удельным тепловым эффектом неактивированного исходного нанопорошка алюминия при нагревании в воздухе до 1200°С в ячейке термоанализатора.

После воздействия магнитным полем частотой 50 Гц произошло активирование нанопорошка алюминия, что подтверждается увеличением удельного теплового эффекта окисления на величину отклонения теплового эффекта по сравнению с неактивированныи порошком. Тепловой эффект окисления рассчитывался термоанализатором автоматически. Удельный тепловой эффект окисления определяли как сумму двух экзоэффектов при окислении. Для образца 1 исходного нанопорошка алюминия (таблица 1), не подвергнутого активации, он равен 9368 Дж/г, то есть сумме 6004 Дж/г и 3364 Дж/г (фиг. 2). Для образца 3, активированного переменным магнитным полем, соответствующая сумма равна 12458 Дж/г (фиг. 3). Разность величин удельных тепловых эффектов активированного магнитным полем нанопорошка 12458 Дж/г и исходного нанопорошка 9368 Дж/г является результатом увеличения удельного теплового эффекта 3090 Дж/г.Это увеличение составило 32,98% относительно неактивированного нанопорошка алюминия. Аналогичным образом рассчитывали результат увеличения удельного теплового эффекта для остальных активированных образцов нанопорошка алюминия.

По данным таблицы 1 увеличение удельных тепловых эффектов произошло при всех значениях силы тока в шине, уровней нанопорошков алюминия в пробирках и времен активации и составило от 2,70% до 32,98%. Наибольшие значения увеличения удельного теплового эффекта наблюдались при силах тока 100, 300, 600 А, при уровнях нанопорошков алюминия в пробирках 5 и 15 мм и при временах воздействия 20 и 40 минут.


СПОСОБ АКТИВАЦИИ НАНОПОРОШКА АЛЮМИНИЯ
СПОСОБ АКТИВАЦИИ НАНОПОРОШКА АЛЮМИНИЯ
СПОСОБ АКТИВАЦИИ НАНОПОРОШКА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 255.
13.01.2017
№217.015.6e74

Способ управления активностью катализатора процесса дегидрирования высших н-парафинов

Изобретение относится к органической химии, а именно к процессам дегидрирования с образованием неароматических соединений, содержащих двойные углерод-углеродные связи, каталитическим способом, и может быть использовано при производстве сырья, используемого в технологии производства линейных...
Тип: Изобретение
Номер охранного документа: 0002596870
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e88

Устройство компенсации погрешности измерения ультразвукового локатора

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит два независимых канала, каждый из которых содержит генератор ультразвуковых сигналов,...
Тип: Изобретение
Номер охранного документа: 0002596907
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71e8

Стенд для исследования процесса зажигания и горения капли органоводоугольного топлива

Изобретение относится к экспериментальному оборудованию, а именно к исследованию процессов тепломассопереноса, фазовых превращений и химического реагирования при зажигании одиночных капель различных по компонентному составу органоводоугольных топлив в газовой среде окислителя. Стенд содержит...
Тип: Изобретение
Номер охранного документа: 0002596797
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7778

Способ компенсации погрешности измерения ультразвукового локатора

Использование: для измерения глубины скважин посредством ультразвукового локационного устройства. Сущность изобретения заключается в том, что способ компенсации погрешности измерения ультразвукового локатора включает излучение, прием ультразвуковых сигналов и измерение временных интервалов...
Тип: Изобретение
Номер охранного документа: 0002599602
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7958

Способ получения металлического бериллия

Изобретение относится к получению металлического бериллия из бериллиевых концентратов. Бериллийсодержащее сырье смешивают с гидрофторидом аммония, взятого с 5-20%-ным избытком согласно стехиометрически необходимого количества. Фторирование концентрата проводят при 130-240°C. Образованный спек...
Тип: Изобретение
Номер охранного документа: 0002599478
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.796c

Релятивистский магнетрон с катодными концевыми экранами

Изобретение относится к области релятивистской высокочастотной электроники и может быть использовано для генерации сверхмощного СВЧ-излучения. Релятивистский магнетрон с катодными концевыми экранами содержит многорезонаторный анодный блок (1) с торцевыми крышками (7), волноводный вывод мощности...
Тип: Изобретение
Номер охранного документа: 0002599388
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7cb9

Способ получения паравольфрамата аммония

Изобретение относится к способу получения паравольфрамата аммония из вольфрамового концентрата. Способ включает автоклавное содовое выщелачивание вольфрамового концентрата, регенерацию содового раствора и возвращение его на выщелачивание, концентрирование вольфрама с помощью ионного обмена на...
Тип: Изобретение
Номер охранного документа: 0002600045
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8481

Устройство для генерации последовательно движущихся капель жидкости

Изобретение относится к области исследования свойств жидкостей, а именно к дозаторам с внешним управлением для повторяющегося отмеривания и выдачи заданных объемов жидкостей и может быть использовано при проведении научных исследований в области гидродинамики, химии, биологии, медицины и др....
Тип: Изобретение
Номер охранного документа: 0002602996
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8507

Способ определения температуры эксплуатации элементов котельного оборудования

Изобретение относится к области энергетического машиностроения и может найти применение на предприятиях энергетической отрасли, при разработке энергетического оборудования и исследовании новых марок сталей. В способе подготавливают образцы элемента котельного оборудования, затем их нагревают,...
Тип: Изобретение
Номер охранного документа: 0002603207
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.85d4

Способ твердофазной экстракции красителя малахитового зеленого

Изобретение относится к области аналитической химии и может быть использовано для твердофазной экстракции тетраметил-4,4-диаминотрифенилметана (малахитового зеленого) из водных растворов. Способ твердофазной экстракции красителя малахитового зеленого включает взаимодействие полимерной матрицы...
Тип: Изобретение
Номер охранного документа: 0002603161
Дата охранного документа: 20.11.2016
Показаны записи 11-14 из 14.
04.02.2020
№220.017.fdb6

Устройство для исследования процесса горения порошков металлов или их смесей

Изобретение относится к области квантовой электроники, а именно неразрушающего контроля и диагностики оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом....
Тип: Изобретение
Номер охранного документа: 0002712756
Дата охранного документа: 31.01.2020
05.04.2020
№220.018.1361

Способ обеспечения достоверности складской расписки и устройство для осуществления способа

Изобретение относится к способу и устройству автоматизированного обеспечения достоверности электронной складской расписки. Технический результат заключается в автоматизации обеспечения достоверности электронной складской расписки. Устройство содержит связанные между собой blockchain с блоком...
Тип: Изобретение
Номер охранного документа: 0002718433
Дата охранного документа: 02.04.2020
04.05.2020
№220.018.1af4

Устройство для определения значений характеристик готовности изделия к применению

Изобретение относится к вычислительной технике, в частности к контрольным устройствам и может быть использовано в научных исследованиях и технике, где необходимо определять время наступления постепенного отказа, определять оптимальный период технического обслуживания и очередной период...
Тип: Изобретение
Номер охранного документа: 0002720382
Дата охранного документа: 29.04.2020
21.04.2023
№223.018.5002

Устройство для исследования процесса горения нанопорошков металлов или их смесей

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002746308
Дата охранного документа: 12.04.2021
+ добавить свой РИД