×
08.05.2019
219.017.48f8

МАГНИТОСТРИКЦИОННЫЙ ТЕПЛОНОСИТЕЛЬ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002686826
Дата охранного документа
30.04.2019
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к магнитореологическим теплоносителям для теплообменных холодильных и кондиционерных установок и систем. Магнитореологический теплоноситель состоит из жидкости, выбранной из спиртов, многоатомных спиртов, воды, их смесей, полиэтилсилоксанов, и микрочастиц интерметаллического магнитострикционного сплава тербия, диспрозия и железа состава: Tb Dy Fe концентрации 0,1-1,6 мас. %. Указанные микрочастицы изготовлены в виде чешуек размером от 5 до 64 мкм по длине и от 3 до 20 мкм по толщине. Изобретение обеспечивает повышение теплопроводности теплоносителя при интенсификации процесса теплообмена. 1 табл., 3 пр.
Реферат Свернуть Развернуть

Изобретение относится к области теплообмена и теплообменной техники, а именно к теплоносителям (хладоносителям) для холодильных установок и систем, а также для систем кондиционирования, обогрева и создания комфортной среды в зданиях и сооружениях.

Известны магнитореологические жидкости (МРЖ) на основе дисперсной магнитной фазы микрочастиц, например карбонильного железа, покрытых поверхностно активным веществом(ПАВ) в состоянии коллоидного раствора [1-2].

По патенту RU 2414764 [1] МРЖ имеет узко ограниченное применение в устройствах с высокими значениями напряжения сдвига и низкими скоростями перетока, например, в амортизаторах, сцеплениях, тормозах и управляющих механизмах и не подходит для регулирования потока теплоносителя и его теплопроводности в системах хладоснабжения, кондиционирования или отопления при существенных расходах и скоростях циркуляции в контуре теплоносителя.

По патенту RU 2624113 [2] (прототип) известен магнитореологический теплоноситель (МРТ) для холодильных и кондиционерных систем, состоящий из жидкости, выбранной из ряда спиртов, многоатомных спиртов, кремнийорганических веществ, содержащей мелкодисперсный компонент из магнитного материала, поверхность которого обработана поверхностно-активным веществом (ПАВ), где мелкодисперсный компонент из магнитного материала представляет собой микрочастицы карбонильного железа с размером каждой микрочастицы в одной плоскости не более 15 мкм при толщине не более 10% от линейного размера в плоскости, причем количество мелкодисперсного компонента в теплоносителе составляет от 0,05 до 2,5 мас. %.

Известный МРТ до некоторой степени улучшает расходную характеристику потока теплоносителя и повышает его теплопроводность, в особенности, при наличии магнитного поля, причем оптимальным является одновременное воздействие постоянного и переменного магнитных полей, например, по патенту РФ №2644900 [3].

Однако результат реализации известного технического решения по МРТ невелик в случае совокупного использования магнитострикционного эффекта с известным составом МРЖ. Коэффициент магнитострикции для карбонильного железа весьма низок и близок к 1,5×10-6. В этой связи известный состав МРТ имеет ограниченное применение.

Известный МРТ не позволяет достичь повышенных значений теплопроводности магнитореологического теплоносителя в системах охлаждения и кондиционирования объектов различного назначения.

Указанных недостатков лишен предлагаемый новый теплоноситель магнитореологический с магнитострикционными свойствами -магнитострикционный теплоноситель (МСТ).

Согласно источникам [4 и 5], известно, что замороженная или полимеризованная ферромагнитная жидкость, находящаяся в совокупности воздействия постоянного (подмагничивающего) и переменного магнитных полей, может служить источником упругих колебаний с частотой переменного поля, что может быть использовано для генерации электромеханических колебаний с использованием эффекта магнитострикции.

Известное техническое решение касается замороженной или полимелизованной жидкости с магниточувствительными частицами, что неприемлемо для потоков теплоносителя в контурах холодильных установок и систем, а также систем кондиционирования, обогрева и создания комфортной среды в зданиях и сооружениях.

В новом техническом решении авторами предложен жидкий магнитореологический теплоноситель с магнитострикционными свойствами - магнитострикционный теплоноситель (МСТ), содержащий микрочастицы материала, обладающего большой магнитострикцией до 1,0×10-3 для использования в теплотехнике холодильных и кондиционерных систем и схем тепло - хладоснабжения объектов и сооружений и др.

Следует отметить, что магнитострикционный эффект заключается в изменении размеров ферромагнитных тел под действием магнитного поля. Это справедливо и для магнитострикционных микрочастиц или группы микрочастиц, в особенности с размерами не менее размеров магнитных доменов. На практике обычно используют линейную магнитострикцию, связанную с изменением линейного размера магнитострикционного материала с частотой колебаний прилагаемого переменного магнитного поля.

При одновременном приложении постоянного смещающего поля и переменного возбуждающего магнитного поля результирующее поле меняется в некоторых пределах, от максимального до минимального значения не меняя направления. Результирующая деформация -источник электромеханических колебаний, пульсирует около некоторого среднего значения с частотой, равной частоте возбуждающего магнитного поля. При этом частота деформации магнитострикционного элемента соответствует частоте прилагаемого переменного магнитного поля, а амплитуда деформации увеличивается. Электромеханические магнитострикционные колебания лежат в пределах до 100 КГц [6].

Уникальные магнитные свойства и способности обладать большой магнитострикцией характерны для некоторых видов редкоземельных металлов и их сплавов, например: Tb и Dy; TbFe2 и DyFe2.

Для разработки нового магнитострикционного теплоносителя авторы изобретения эмпирическим образом подобрали интерметаллический сплав на основе тербия, диспрозия и железа. Микрочастицы сплава были использованы в качестве магнитострикционного наполнителя в новом теплоносителе для организации эффективного теплообмена в холодильных и кондиционерных системах. Выбор обоснован доступностью материала по технологии изготовления, по техническим параметрам, величине его магнитострикции и по стоимости.

Иные материалы и сплавы, из упомянутых ранее, близки по показателям магнитострикции к выбранному сплаву, но сложны и дороги в получении и изготовлении, обладают заметной хрупкостью и при эксплуатации в частотном режиме расширение - возвратное сжатие подвержены частичному растрескиванию и разрушению структуры, вследствие чего, они ограничены в применении.

Эффект большой магнитострикции у некоторых металлов и их сплавов обусловлен особенностями строения атомов этих элементов, имеющих не полностью заполненные электронами оболочки d и f и обладающих соответственно большими значениями магнитных моментов. Причем для редкоземельных элементов, обладающих большим магнетизмом, характерны незаполненные f оболочки.

Эффект сильного магнетизма и способности к магнитострикции, у этих элементов по сравнению с любыми другими металлами увеличивается за счет упорядоченного размещения атомов в кристаллической решетке редкоземельного металла и наличия эффективного магнитного поля решетки.

Монокристаллы Tb и Dy имеют обычно гексогональную решетку, которая может трансформироваться в том числе и в сплавах с другими металлами в тригональную, но чаще в объемно центрированную кубическую решетку при этом происходит смешение структур решеток отдельных элементов. Переходы состояния решеток являются фазовыми переходами второго рода. Они сопровождаются в нашем случае появлением эффекта большой магнитострикции, которая в полной мере проявляется при приложении переменного магнитного поля.

Основной технической задачей изобретения была разработка нового магнитострикционного теплоносителя (МСТ) с увеличенной теплопроводностью, содержащего микрочастицы материала, обладающего большой магнитострикцией.

Поставленная цель достигалась путем создания смеси жидкости - теплоносителя выбранного из ряда спиртов, многоатомных спиртов, воды и их смесей, кремнийорганических веществ, содержащей микрочастицы мелкодисперсные из магнитного материала, поверхность которых обработана поверхностно-активным веществом, причем микрочастицы изготовлены из магнитострикционного материала - интерметаллического сплава тербия, диспрозия и железа в следующих массовых соотношениях, мас. % Tb (0,30-0,44) Dy (0,15-0,30) Fe (0,30-0,50) в виде чешуек размером от 5 до 64 мкм и толщиной от 3 до 20 мкм, с концентрацией их в теплоносителе от 0,1 до 1,6 мас. %.

Микрочастицы магнитореологического теплоностеля (МРТ) и магнитострикционного теплоносителя (МСТ) покрывали от их слипания в конгломерат ПАВ на основе кобаламинов или цинковым комплексом фосфоновой кислоты Nа2ZnОЭДФ, или составами на основе кремнийорганических солей силикатов кальция, а также боратов кальция.

Сравнение работоспособности теплоносителей и их технических характеристик (МРТ по прототипу и МСТ по новому решению) в обоих случаях проводили путем сопоставления теплопроводности при равном расходе МРТ и МСТ. Сравнение значений теплопроводности МРТ и МСТ проводили в точке тестирования с напряженностью постоянного магнитного поля 500 Э, переменного магнитного поля 450 Э при его частоте 95 Гц для всех заявленных видов жидкого теплоносителя. Эмпирически, в результате экспериментов установлено, что новый МСТ теплоноситель обладает лучшей теплопроводностью по сравнению с известным МРТ теплоносителем.

Источником улучшения теплопроводности нового МСТ по сравнению с известным МРТ является боле эффективное и быстрое преобразование ламинарного течения теплоносителя в турбулентное, в особенности, в пограничном слое теплоноситель - материал теплообменника в теплообменном оборудовании.

Как следствие, интенсифицируется процесс теплообмена и повышается значение теплопроводности. Колебания частиц карбонильного железа в МРТ носят выраженный механический характер, в то время как колебания частиц магнитострикционных в МСТ носят комбинированный характер - результат взаимодействия механических колебаний и магнитострикционных колебаний, связанных с линейной магнитострикцией, которые носят ударно-волновой характер. Все это позволяет повысить эффективность МСТ по сравнению с МРТ в части увеличения теплопроводности теплоносителя.

Причинно-следственная связь между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом по сравнению с прототипом изложена и прослеживается в примерах реализации нового МСТ теплоносителя, содержащего микрочастицы материала - интерметаллического сплава, обладающего большой магнитострикцией. Кроме того, результаты экспериментов сведены в таблицу и представлены ниже.

Многочисленные эксперименты по подбору состава нового теплоносителя (МСТ) и его тестированию по теплопроводности по сравнению с МРТ - прототипом проводили при температурах от-30° С до +10° С на стендовой установке с использованием стандартных измерительных приборов. В сводной таблице обобщены и приведены усредненные данные по экспериментам в диапазоне рабочих температур от -5° С до +5° С, комфортных для организации технологического кондиционирования и создания умеренного холода. За границами этого температурного диапазона наблюдаются аналогичные соотношения параметров реализации нового магнитострикционного теплоносителя (МСТ) в сравнении с МРТ-прототипом.

Сравнение МСТ и МРТ по теплопроводности проводили в равных температурных условиях окружающей среды и теплоносителя. МСТ по новому техническому решению и МРТ по прототипу формировали на основе жидкости-носителя выбранной из ряда спиртов, например, октанол, многоатомных спиртов, воды и их смесей, например водный раствор пропиленгликоля, кремнийорганических веществ, например, полиэтилсилоксана, с одинаковыми теплофизическими характеристиками жидкой основы для МРТ и МСТ.

В качестве мелкодисперсного компонента из магнитного материала в МСТ по новому техническому решению использовали микрочастицы магнитострикционного интерметаллического сплава тербия, диспрозия и железа в следующих массовых соотношениях компонентов, мас. % Tb (0,30-0,44) Dy (0,15-0,30) Fe (0,30-0,50), изготовленные в виде чешуек размером от 5 до 60 мкм при толщине от 3 до 20 мкм, с концентрацией их в теплоносителе от 0,1 до 1,6 мас. %.

Примеры реализации нового МСТ по сравнению с МРТ - прототипом для нижней, усредненной и верхней границ технических параметров теплоносителей.

Пример 1. Брали жидкий теплоноситель в виде полиэтилсилоксана с минимальным значением компонентов наполнителя магнитострикционных микрочастиц, покрытых ПАВ, мас. % Tb (0,30) Dy (0,15) Fe (0,30) интерметаллического сплава с размером чешуйчатых частиц 5 мкм при толщине 3 мкм с концентрацией их в теплоносителе 0,1 мас. %.

Параллельно брали аналогичный жидкий теплоноситель с минимальным значением компонентов наполнителя микрочастиц -карбонильного железа по прототипу, покрытых аналогичным ПАВ, с размером не более 15 мкм, например, 7 мкм в одной плоскости при толщине не более 10% от линейного размера, например, 0,7 мкм с концентрацией 0,05 мас. % и проводили замеры теплопроводности МРТ и МСТ теплоносителей в точке тестирования в одинаковых условиях эксперимента.

Пример 2. Брали жидкий теплоноситель в виде полиэтилсилоксана со средним значением компонентов наполнителя магнитострикционных микрочастиц, покрытых ПАВ, мас. % Tb (0,37) Dy (0,23) Fe (0,4) интерметаллического сплава с размером чешуйчатых частиц 32 мкм при толщине 12 мкм с концентрацией их в теплоносителе 1,0 мас. %.

Параллельно брали аналогичный жидкий теплоноситель со средним значением компонентов наполнителя микрочастиц - карбонильного железа, покрытых ПАВ по прототипу с размером не более 15 мкм, например, 10 мкм в одной плоскости при толщине не более 10% от линейного размера, например, 1,0 мкм с концентрацией 1,5 мас. % и проводили замеры теплопроводности МРТ и МСТ теплоносителей в точке тестирования в одинаковых условиях эксперимента.

Пример 3. Брали жидкий теплоноситель в виде полиэтилсилоксана с максимальным значением компонентов наполнителя магнитострикционных микрочастиц, покрытых ПАВ, мас. % Tb (0,44), Dy (0,30) и Fe (0,50) интерметаллического сплава с размером чешуйчатых частиц 64 мкм при толщине 20 мкм с концентрацией их в теплоносителе 1,6 мас. %.

Параллельно брали аналогичный жидкий теплоноситель с максимальным значением компонентов наполнителя микрочастиц-карбонильного железа, покрытых ПАВ, по прототипу с размером не более 15 мкм, например, 15 мкм в одной плоскости при толщине не более 10% от линейного размера, например, 1,5 мкм с концентрацией 2,5 мас. % и проводили замеры теплопроводности МРТ и МСТ теплоносителей в точке тестирования в одинаковых условиях эксперимента.

В качестве ПАВ брали цинковый комплекс фосфоновой кислоты.

Аналогично примерам 1-3 получены результаты экспериментов для теплоносителей на основе жидкости-носителя выбранной из ряда спиртов, например, октанол, многоатомных спиртов, воды и их смесей, например водный раствор пропиленгликоля и др. для МРТ и МСТ.

Все данные по теплопроводности представлены в сводной таблице.

Видно, что значения теплопроводности МСТ превышают аналогичные технические характеристики для МРТ в диапазоне заявленных параметров нового теплоносителя.

Снижение технических характеристик-параметров МСТ по компонентному составу магнитострикционных микрочастиц ниже заявленных: в интерметаллическом сплаве, например, в мас. % Tb (0,27) Dy (0,12) Fe (0,27), размера микрочастиц 4 мкм, при толщине 2,8 мкм, и их концентрации в жидком носителе 0,05 мас. % приводит к уменьшению значений теплопроводности до уровня прототипа.

Объясняется это падением магнитострикционной составляющей в колебаниях микрочастиц в МСТ при дроблении их слоя до размеров менее магнитного домена, что приводит к сближению значений теплопроводности к МРТ с микрочастицами карбонильного железа.

Увеличение технических характеристик-параметров МСТ по компонентному составу магнитострикционных микрочастиц больше заявленных в интерметаллическом сплаве, например, в мас. % Tb (0,47) Dy (0,35) Fe (0,55), размера микрочастиц 68 мкм, при толщине 25 мкм, и их концентрации в жидком носителе 1,8 мас. % приводит к уменьшению значений теплопроводности до уровня прототипа.

Причиной данного эффекта частично является наложение и взаимоподавление магнитострикционных колебаний близлежащих микрочастиц при повышении их содержания в жидком носителе, кроме того, избыток микрочастиц приводит к их частичному выпадению в осадок и нарушению структуры магнитного поля в структуре теплоносителя.

Источники информации

1. Патент RU 2414764

2. Патент RU 2624113

3. Патент RU №2644900

4. Ватутин Э.И. и др. Некоторые результаты моделирования процесса генерации упругих волн переменным магнитным полем в магнитоупорядоченных композитах. Сборник научных трудов "Сварка и родственные технологии в машиностроении и электронике" (2002).

5. Патент RU 328153

6. Справочник химика 21. Магнитострикционный эффект.Chem21.info.

Примечание:

• МСТ- магнитострикционный теплоноситель; МРТ - магнитореологический теплоноситель;

• Минимальный, усредненный и максимальный составы компонентов для МСТ и МРТ приведены в примерах;

• Режимы проведения экспериментов приведены на стр. 5 и 6 содержания.

Магнитореологический теплоноситель для теплообменных холодильных и кондиционерных систем, состоящий из жидкости, выбранной из ряда спиртов, многоатомных спиртов, воды и их смесей, полиэтилсилоксанов, содержащей мелкодисперсные частицы из магнитного материала, поверхность которых обработана поверхностно-активным веществом, отличающийся тем, что мелкодисперсные микрочастицы представляют собой интерметаллический магнитострикционный сплав тербия, диспрозия и железа состава: Tb Dy Fe, причем микрочастицы изготовлены в виде чешуек размером от 5 до 64 мкм по длине и от 3 до 20 мкм по толщине, с содержанием в указанной жидкости в концентрации 0,1-1,6 мас. %.
Источник поступления информации: Роспатент

Показаны записи 1-9 из 9.
10.03.2016
№216.014.ca3e

Хладоноситель для термостабилизации вечномерзлого грунта

Изобретение относится к области строительства и холодильной техники, а именно к жидким рабочим составам для термостабилизации грунта при устройстве оснований и опор зданий, сооружений, трубопроводных систем в зоне вечной мерзлоты, конкретно к хладоносителям, используемым в устройствах и...
Тип: Изобретение
Номер охранного документа: 0002577056
Дата охранного документа: 10.03.2016
13.01.2017
№217.015.91d3

Антифриз энергосберегающий

Предложен антифриз энергосберегающий для двигателей внутреннего сгорания автомобилей, тяжелой колесной и гусеничной техники гражданского и военного назначения и других транспортных средств, а также генераторных установок, который обладает низкой вязкостью и повышенной теплопередающей...
Тип: Изобретение
Номер охранного документа: 0002605905
Дата охранного документа: 27.12.2016
26.08.2017
№217.015.db74

Магнитореологический теплоноситель и способ его применения

Изобретение относится к магнитореологическим теплоносителям (хладоносителям) и их использованию в холодильных и кондиционерных системах. Магнитореологический теплоноситель состоит из жидкости, содержащей мелкодисперсный компонент из магнитного материала, поверхность которого обработана...
Тип: Изобретение
Номер охранного документа: 0002624113
Дата охранного документа: 30.06.2017
29.12.2017
№217.015.fe30

Способ хранения свежего охлажденного мяса

Изобретение относится к отрасли пищевой промышленности и может быть использовано при продленном хранении свежего охлажденного мяса животных и птицы. Способ предусматривает нанесение на поверхность мяса водосодержащего защитного многокомпонентного состава в жидком виде с последующей упаковкой...
Тип: Изобретение
Номер охранного документа: 0002638313
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.1ce4

Состав для хранения свежего охлажденного мяса

Изобретение относится к пищевой промышленности и сельскохозяйственному производству, а именно к хранению свежего охлажденного мяса животных и птицы. Состав содержит продукт взаимодействия смеси пропиленгликоля и глицерина с компонентом природного происхождения, выбранным из группы, включающей...
Тип: Изобретение
Номер охранного документа: 0002640422
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.30a0

Способ обработки магнитореологической жидкости-теплоносителя

Изобретение относится к области теплообменной техники, а именно к способу обработки магнитореологической жидкости-теплоносителя для холодильных и кондиционерных систем. Магнитореологический теплоноситель включает микрочастицы карбонильного железа, поверхность которых обработана поверхностно...
Тип: Изобретение
Номер охранного документа: 0002644900
Дата охранного документа: 14.02.2018
12.12.2019
№219.017.ec2f

Способ хранения свежего охлажденного мяса

Изобретение относится к пищевой промышленности и предназначено для хранения продуктов питания, например свежего охлажденного мяса, с целью увеличения сроков хранения и сохранения его качественных показателей, а также для сохранения свежести биологических объектов животного происхождения при их...
Тип: Изобретение
Номер охранного документа: 0002708555
Дата охранного документа: 09.12.2019
17.02.2020
№220.018.03b8

Способ хранения свежего охлажденного мяса свинины в постоянном магнитном поле

Изобретение относится к пищевой промышленности и предназначено для хранения продуктов питания, в частности свежего охлажденного мяса свинины, с целью увеличения сроков хранения и сохранения его качества. Способ хранения свежего охлажденного мяса свинины включает нанесение на его поверхность...
Тип: Изобретение
Номер охранного документа: 0002714240
Дата охранного документа: 13.02.2020
03.06.2020
№220.018.2398

Клатратный ингибитор коррозии

Изобретение относится к ингибиторам коррозии для теплоносителей холодильных систем, двигателей внутреннего сгорания, трубопроводного транспорта коммунальных и нефтегазовых систем и др. Состав для ингибирования коррозии включает ингибиторы коррозии из ряда: нитрит натрия, бензоат натрия,...
Тип: Изобретение
Номер охранного документа: 0002722533
Дата охранного документа: 01.06.2020
Показаны записи 1-9 из 9.
10.03.2016
№216.014.ca3e

Хладоноситель для термостабилизации вечномерзлого грунта

Изобретение относится к области строительства и холодильной техники, а именно к жидким рабочим составам для термостабилизации грунта при устройстве оснований и опор зданий, сооружений, трубопроводных систем в зоне вечной мерзлоты, конкретно к хладоносителям, используемым в устройствах и...
Тип: Изобретение
Номер охранного документа: 0002577056
Дата охранного документа: 10.03.2016
13.01.2017
№217.015.91d3

Антифриз энергосберегающий

Предложен антифриз энергосберегающий для двигателей внутреннего сгорания автомобилей, тяжелой колесной и гусеничной техники гражданского и военного назначения и других транспортных средств, а также генераторных установок, который обладает низкой вязкостью и повышенной теплопередающей...
Тип: Изобретение
Номер охранного документа: 0002605905
Дата охранного документа: 27.12.2016
26.08.2017
№217.015.db74

Магнитореологический теплоноситель и способ его применения

Изобретение относится к магнитореологическим теплоносителям (хладоносителям) и их использованию в холодильных и кондиционерных системах. Магнитореологический теплоноситель состоит из жидкости, содержащей мелкодисперсный компонент из магнитного материала, поверхность которого обработана...
Тип: Изобретение
Номер охранного документа: 0002624113
Дата охранного документа: 30.06.2017
29.12.2017
№217.015.fe30

Способ хранения свежего охлажденного мяса

Изобретение относится к отрасли пищевой промышленности и может быть использовано при продленном хранении свежего охлажденного мяса животных и птицы. Способ предусматривает нанесение на поверхность мяса водосодержащего защитного многокомпонентного состава в жидком виде с последующей упаковкой...
Тип: Изобретение
Номер охранного документа: 0002638313
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.1ce4

Состав для хранения свежего охлажденного мяса

Изобретение относится к пищевой промышленности и сельскохозяйственному производству, а именно к хранению свежего охлажденного мяса животных и птицы. Состав содержит продукт взаимодействия смеси пропиленгликоля и глицерина с компонентом природного происхождения, выбранным из группы, включающей...
Тип: Изобретение
Номер охранного документа: 0002640422
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.30a0

Способ обработки магнитореологической жидкости-теплоносителя

Изобретение относится к области теплообменной техники, а именно к способу обработки магнитореологической жидкости-теплоносителя для холодильных и кондиционерных систем. Магнитореологический теплоноситель включает микрочастицы карбонильного железа, поверхность которых обработана поверхностно...
Тип: Изобретение
Номер охранного документа: 0002644900
Дата охранного документа: 14.02.2018
12.12.2019
№219.017.ec2f

Способ хранения свежего охлажденного мяса

Изобретение относится к пищевой промышленности и предназначено для хранения продуктов питания, например свежего охлажденного мяса, с целью увеличения сроков хранения и сохранения его качественных показателей, а также для сохранения свежести биологических объектов животного происхождения при их...
Тип: Изобретение
Номер охранного документа: 0002708555
Дата охранного документа: 09.12.2019
17.02.2020
№220.018.03b8

Способ хранения свежего охлажденного мяса свинины в постоянном магнитном поле

Изобретение относится к пищевой промышленности и предназначено для хранения продуктов питания, в частности свежего охлажденного мяса свинины, с целью увеличения сроков хранения и сохранения его качества. Способ хранения свежего охлажденного мяса свинины включает нанесение на его поверхность...
Тип: Изобретение
Номер охранного документа: 0002714240
Дата охранного документа: 13.02.2020
03.06.2020
№220.018.2398

Клатратный ингибитор коррозии

Изобретение относится к ингибиторам коррозии для теплоносителей холодильных систем, двигателей внутреннего сгорания, трубопроводного транспорта коммунальных и нефтегазовых систем и др. Состав для ингибирования коррозии включает ингибиторы коррозии из ряда: нитрит натрия, бензоат натрия,...
Тип: Изобретение
Номер охранного документа: 0002722533
Дата охранного документа: 01.06.2020
+ добавить свой РИД