×
02.05.2019
219.017.489c

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002686676
Дата охранного документа
30.04.2019
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический результат достигается тем, что в способе измерения вектора перемещения, при котором сверхвысокочастотные (СВЧ) волны с длиной волны λ излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскостях, принимают отраженные волны, выделяют сигналы D(t) и D(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N и N, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N+N)sin(ϕ)/(N-N) и ϕ=λ(N-N)90°/πrcos(α)cos(β), где r=l+2hctg(α)tg(β). 5 ил.

Изобретение относится к измерительной технике, в частности к способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые способы измерения перемещения, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С.Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с). Обычно они применяются в радиолокации для определения скорости и координат движущихся объектов. Также они находят применение для измерения путевой скорости и перемещения автомобилей и железнодорожных составов. В отличие от способов, определяющих перемещение по числу оборотов колеса, как например, в одометрах, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость и расстояние, как результат интегрирования скорости по времени, которое не зависит от скольжения, движения при повороте и пробуксовывании, поскольку измерение производится бесконтактно. Доплеровский способ измерения заключается в зондировании движущихся объектов электромагнитными волнами СВЧ диапазона и выделении частоты смещения рассеянной волны. Если источник излучения с фиксированной частотой f0 расположен спереди транспортного средства движущегося со скоростью V и его антенна направлена под углом α между направлением движения и подстилающей поверхностью (см. Фиг. 1), то доплеровская частота fD определится по формуле:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, с - скорость света в воздухе. Таким образом, измеряя доплеровскую частоту, можно вычислять скорость по формуле:

Поскольку при движении скорость постоянно меняется, то пройденное расстояние S или перемещение за время Т, будет определяться интегралом от мгновенной скорости или доплеровской частоты по времени согласно уравнению:

При этом обычно fD определяют по максимуму спектральной плотности доплеровского сигнала, что в условиях движения объекта не может гарантировать точной оценки его скорости и перемещения.

Применение описанного способа для измерения перемещения является более точным по сравнению с одометром, хотя он также представляет скорость в одномерном виде. В тоже время, в современных автомобилях предпочтительно получение информации о двух координатном векторе скорости перемещения. Это важно для использования в автономных навигационных системах (например, инерционных), которые в настоящее время предпочитают применять совместно с системами глобального позиционирования (GPS, ГЛОНАСС и др.). Применение для измерения вектора путевой скорости собственно инерционных систем на основе гироскопов и акселерометров затруднено из-за необходимости их размещения точно в центре тяжести транспортного средства, защите хрупких механических деталей от вибраций и повреждений, необходимости проведения частых коррекций ошибок, высокой стоимости. При этом необходимо учитывать большое количество параметров, таких как момент инерции, коэффициент трения, сопротивление воздуха и др. Кроме этого, накопительный характер ошибок в определении координат инерционными системами приводит к их существенному росту при продолжительном отсутствии коррекции.

Наиболее близким по технической сущности является способ измерения путевой скорости и, соответственно, перемещения (RU 2654931 С1, 23.05.2018), принятый за прототип. При осуществлении этого способа, доплеровские СВЧ датчики скорости располагаются по сторонам транспортного средства и их показания обрабатываются совместно (см. Фиг. 2). Это дает возможность измерить вектор путевой скорости за время Δt, необходимое для вычисления модуля вектора скорости и угла его отклонения относительно первоначального положения оси. При этом измерения производятся бесконтактно и не зависят от большого числа параметров, критичных для инерциальных систем. Далее, за счет интегрирования в соответствии с формулой (3) можно рассчитать вектор перемещения и, таким образом определить пройденное расстояние в двумерном пространстве.

Недостатком способа является тот факт, что пройденное расстояние определяется по скорости, зависящей от мгновенного значения доплеровских частот. Эти частоты определяются по максимальному значению спектральной плотности доплеровского сигнала, который может меняться в процессе накопления данных по амплитуде и частоте из-за неравномерности движения, вибрации, неоднородностей отражающей поверхности и др. Это приводит к ошибкам в определении скоростей, которые накапливаются в соответствии с формулой (3) при определении пройденного расстояния.

Техническим результатом настоящего изобретения является повышение точности измерения вектора перемещения транспортного средства.

Технический результат достигается тем, что в способе измерения вектора перемещения, при котором СВЧ волны с длиной волны λ0 излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскости, принимают отраженные волны, выделяют сигналы D1(t) и D2(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами. Дополнительно к этому, подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N1 и N2, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N1+N2)sinϕ/(N1-N2) и ϕ=λ0(N1-N2)90°/πtrcos(α)cos(β), где r=l+2hctg(α)tg(β).

На Фиг. 1 представлено расположение сбоку на транспортном средстве одного из двух одинаковых доплеровских датчиков перемещения, реализующих способ.

На Фиг. 2 показано расположение доплеровских датчиков на транспортном средстве сверху при его движении.

На Фиг. 3 поясняется процесс определения вектора перемещения при движении транспортного средства.

На Фиг. 4 показан типичный доплеровский сигнал - а) и его спектральная плотность в нормализованном виде (периодограмма) - б).

На Фиг. 5 показан доплеровский сигнал - а) и импульсы, соответствующие количеству его полупериодов - б).

Антенны каждого из доплеровских датчиков скорости 1 и 2 расположены на боковой стороне транспортного средства 3 на высоте h над поверхностью и направлены под углом α к направлению движения в вертикальной плоскости, как показано на Фиг. 1, и на угол β в горизонтальной, как показано на Фиг. 2. При этом расстояние между ними равно его ширине l. Оба датчика выделяют сигналы D1(t) и D2(f) с доплеровскими частотами fD1 и fD2, пропорциональными радиальной скорости взаимного перемещения датчиков и подстилающей отражающей поверхности. В результате, скорости перемещения мест расположения датчиков V1 и V2 можно определить по формулам:

Если транспортное средство движется по прямой, совпадающей с его осью, то эти скорости будут равны. Если происходит поворот направо, как показано на Фиг. 2. Тогда скорость V1 будет больше V2, а движение будет происходить по окружности с радиусом R, проходящей через центр транспортного средства. При этом центры левого и правого следов диаграмм направленности антенн датчиков (см. заштрихованные области на Фиг. 2) будут перемещаться по радиусам R + r/2 и R - r/2, где r - расстояние между ними. При этом за некоторый дискретный i-ый одинаковый период времени Т=Δt, перемещения этих проекций по подстилающей поверхности будут определяться выражениями

где Ri, и ωi - текущий радиус и угол поворота транспортного средства (см. Фиг. 3), которые определяются из решения этой системы уравнений (5):

Поскольку, длина хорды Li=2Ri sin(ωi/2), а ϕii/2, то с учетом (6), получим выражение для вектора перемещения:{Li,ϕi}:

Расстояние r можно вычислить из формул решения прямоугольных треугольников (см. Фиг. 1 и Фиг. 2):

где а - расстояние между проекцией датчика на поверхность и центром следа диаграммы направленности его антенны на поверхность в вертикальной плоскости (см. Фиг. 1), b -расстояние между центром следа от диаграммы направленности антенны датчика на поверхности и направлением движения в горизонтальной плоскости (см. Фиг. 2). Если при этом перемещения датчиков S1i, и S2i измерять обычным способом, интегрируя скорости по времени (3), то результат будет не точный. За время интегрирования Δt доплеровские сигналы могут меняться как по частоте, так и по амплитуде из-за неравномерного движения, вибрации, неоднородных отражающих свойств дороги и т.д. Это показано на Фиг. 4а и 4б, где изображен реальный сигнал D(t) и его спектральная плотность в нормализованном виде (периодограмма). Видно, что определить точно максимум спектральной плотности накопленного за время Δt сигнала не представляется возможным. В тоже время, если подсчитать число полупериодов сигнала D(t) за время Δt - N(t) (см. Фиг. 5а и 5б), то пройденный путь можно определить по формуле

с дискретной ошибкой .

Таким образом, формулы (6), с учетом подсчета числа полупериодов сигналов D1(t) и D2(t) и формулы (7) можно преобразовать в выражение для текущего состояния вектора перемещения

где r определяется по формуле (8). Маршрут перемещения транспортного средства при этом будет складываться из всех измеренных векторов перемещения согласно формулам

yi=L1 cosϕ1+L2 cos(w12)+…+Li-1cos(w1+w2+…+ϕi-1)

xi=L1sin ϕ1+L2 sin(w12)+…+Li-1 sin(w1+w2+…+ϕi-1)

Таким образом, прямое вычисление пути по перемещениям без процесса определения доплеровской частоты после спектральной обработки с последующим интегрированием повышает точность определения перемещения.

Способ измерения вектора перемещения, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскостях, принимают отраженные волны, выделяют сигналы D(t) и D(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, отличающийся тем, что подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N и N, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N+N)sin(ϕ)/(N-N) и ϕ=λ(N-N)90°/πrcos(α)cos(β), где r=l+2hctg(α)tg(β).
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 276.
20.02.2014
№216.012.a328

Автономный счетчик газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Автономный счетчик газа содержит вход и...
Тип: Изобретение
Номер охранного документа: 0002507483
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a743

Устройство для измерения геометрического размера диэлектрической частицы

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и...
Тип: Изобретение
Номер охранного документа: 0002508534
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b945

Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости...
Тип: Изобретение
Номер охранного документа: 0002513157
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0ab

Устройство для определения поступательного перемещения

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель...
Тип: Изобретение
Номер охранного документа: 0002515072
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c131

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора и повышении скорости решения задачи о выполнимости булевых функций за счет упрощения структуры...
Тип: Изобретение
Номер охранного документа: 0002515206
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c136

Спецпроцессор для поиска гамильтоновых циклов в графах

Изобретение относится к вычислительной технике и направлено на построение эффективного спецпроцессора, осуществляющего поиск Гамильтонова цикла в графе, заданном матрицей смежностей, хранящейся в памяти. Техническим результатом является увеличение скорости решения задачи отыскания Гамильтонова...
Тип: Изобретение
Номер охранного документа: 0002515211
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c144

Каскадное парафазное логическое устройство

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства. Устройство содержит тактовый КМДП инвертор и в каждом каскаде два транзистора сброса...
Тип: Изобретение
Номер охранного документа: 0002515225
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2ae

Способ организации и ведения медицинского мониторинга

Изобретение относится к способу организации и ведения медицинского мониторинга данных состояния пациентов. Технический результат заключается в повышении эффективности и надежности мониторинга и диагностики состояния пациентов. В способе на каждого пациента формируют несколько электронных карт,...
Тип: Изобретение
Номер охранного документа: 0002515587
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c317

Тактируемый логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа,...
Тип: Изобретение
Номер охранного документа: 0002515702
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c405

Инерционный магнитоэлектрический генератор

Изобретение относится к электротехнике и может служить автономным источником питания для различных систем. Технический результат состоит в получении высоких удельных показателей генерации электрических сигналов с величиной, достаточной для электропитания различных электротехнических устройств...
Тип: Изобретение
Номер охранного документа: 0002515940
Дата охранного документа: 20.05.2014
Показаны записи 11-20 из 41.
20.01.2016
№216.013.a401

Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Бесконтактное радиоволновое устройство для измерения толщины диэлектрических материалов содержит первый СВЧ-генератор, делитель...
Тип: Изобретение
Номер охранного документа: 0002573627
Дата охранного документа: 20.01.2016
20.02.2016
№216.014.e89b

Способ измерения диэлектрической проницаемости жидкости в емкости

Изобретение используется для высокоточного определения диэлектрической проницаемости жидкости, находящейся в какой-либо емкости, независимо от ее уровня. Сущность изобретения заключается в том, что в сторону поверхности жидкости по нормали к ней излучают частотно-модулированные по линейному...
Тип: Изобретение
Номер охранного документа: 0002575767
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2cb4

Радиоволновый фазовый способ измерения толщины диэлектрических материалов

Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к...
Тип: Изобретение
Номер охранного документа: 0002579173
Дата охранного документа: 10.04.2016
27.05.2016
№216.015.42c1

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и...
Тип: Изобретение
Номер охранного документа: 0002585320
Дата охранного документа: 27.05.2016
13.01.2017
№217.015.73e2

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Радиоволну направляют через радиопрозрачное окно в трубопроводе под углом α к направлению движения потока. Отраженную волну смешивают с частью падающей волны...
Тип: Изобретение
Номер охранного документа: 0002597666
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7496

Радиоволновое устройство для измерения скорости потока жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к...
Тип: Изобретение
Номер охранного документа: 0002597663
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
+ добавить свой РИД