×
02.05.2019
219.017.489c

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002686676
Дата охранного документа
30.04.2019
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический результат достигается тем, что в способе измерения вектора перемещения, при котором сверхвысокочастотные (СВЧ) волны с длиной волны λ излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскостях, принимают отраженные волны, выделяют сигналы D(t) и D(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N и N, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N+N)sin(ϕ)/(N-N) и ϕ=λ(N-N)90°/πrcos(α)cos(β), где r=l+2hctg(α)tg(β). 5 ил.

Изобретение относится к измерительной технике, в частности к способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны и применяются радиоволновые способы измерения перемещения, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С.Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с). Обычно они применяются в радиолокации для определения скорости и координат движущихся объектов. Также они находят применение для измерения путевой скорости и перемещения автомобилей и железнодорожных составов. В отличие от способов, определяющих перемещение по числу оборотов колеса, как например, в одометрах, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость и расстояние, как результат интегрирования скорости по времени, которое не зависит от скольжения, движения при повороте и пробуксовывании, поскольку измерение производится бесконтактно. Доплеровский способ измерения заключается в зондировании движущихся объектов электромагнитными волнами СВЧ диапазона и выделении частоты смещения рассеянной волны. Если источник излучения с фиксированной частотой f0 расположен спереди транспортного средства движущегося со скоростью V и его антенна направлена под углом α между направлением движения и подстилающей поверхностью (см. Фиг. 1), то доплеровская частота fD определится по формуле:

где - длина волны в среде измерения, а ε - ее диэлектрическая проницаемость, которая для воздуха равна единице, с - скорость света в воздухе. Таким образом, измеряя доплеровскую частоту, можно вычислять скорость по формуле:

Поскольку при движении скорость постоянно меняется, то пройденное расстояние S или перемещение за время Т, будет определяться интегралом от мгновенной скорости или доплеровской частоты по времени согласно уравнению:

При этом обычно fD определяют по максимуму спектральной плотности доплеровского сигнала, что в условиях движения объекта не может гарантировать точной оценки его скорости и перемещения.

Применение описанного способа для измерения перемещения является более точным по сравнению с одометром, хотя он также представляет скорость в одномерном виде. В тоже время, в современных автомобилях предпочтительно получение информации о двух координатном векторе скорости перемещения. Это важно для использования в автономных навигационных системах (например, инерционных), которые в настоящее время предпочитают применять совместно с системами глобального позиционирования (GPS, ГЛОНАСС и др.). Применение для измерения вектора путевой скорости собственно инерционных систем на основе гироскопов и акселерометров затруднено из-за необходимости их размещения точно в центре тяжести транспортного средства, защите хрупких механических деталей от вибраций и повреждений, необходимости проведения частых коррекций ошибок, высокой стоимости. При этом необходимо учитывать большое количество параметров, таких как момент инерции, коэффициент трения, сопротивление воздуха и др. Кроме этого, накопительный характер ошибок в определении координат инерционными системами приводит к их существенному росту при продолжительном отсутствии коррекции.

Наиболее близким по технической сущности является способ измерения путевой скорости и, соответственно, перемещения (RU 2654931 С1, 23.05.2018), принятый за прототип. При осуществлении этого способа, доплеровские СВЧ датчики скорости располагаются по сторонам транспортного средства и их показания обрабатываются совместно (см. Фиг. 2). Это дает возможность измерить вектор путевой скорости за время Δt, необходимое для вычисления модуля вектора скорости и угла его отклонения относительно первоначального положения оси. При этом измерения производятся бесконтактно и не зависят от большого числа параметров, критичных для инерциальных систем. Далее, за счет интегрирования в соответствии с формулой (3) можно рассчитать вектор перемещения и, таким образом определить пройденное расстояние в двумерном пространстве.

Недостатком способа является тот факт, что пройденное расстояние определяется по скорости, зависящей от мгновенного значения доплеровских частот. Эти частоты определяются по максимальному значению спектральной плотности доплеровского сигнала, который может меняться в процессе накопления данных по амплитуде и частоте из-за неравномерности движения, вибрации, неоднородностей отражающей поверхности и др. Это приводит к ошибкам в определении скоростей, которые накапливаются в соответствии с формулой (3) при определении пройденного расстояния.

Техническим результатом настоящего изобретения является повышение точности измерения вектора перемещения транспортного средства.

Технический результат достигается тем, что в способе измерения вектора перемещения, при котором СВЧ волны с длиной волны λ0 излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскости, принимают отраженные волны, выделяют сигналы D1(t) и D2(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами. Дополнительно к этому, подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N1 и N2, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N1+N2)sinϕ/(N1-N2) и ϕ=λ0(N1-N2)90°/πtrcos(α)cos(β), где r=l+2hctg(α)tg(β).

На Фиг. 1 представлено расположение сбоку на транспортном средстве одного из двух одинаковых доплеровских датчиков перемещения, реализующих способ.

На Фиг. 2 показано расположение доплеровских датчиков на транспортном средстве сверху при его движении.

На Фиг. 3 поясняется процесс определения вектора перемещения при движении транспортного средства.

На Фиг. 4 показан типичный доплеровский сигнал - а) и его спектральная плотность в нормализованном виде (периодограмма) - б).

На Фиг. 5 показан доплеровский сигнал - а) и импульсы, соответствующие количеству его полупериодов - б).

Антенны каждого из доплеровских датчиков скорости 1 и 2 расположены на боковой стороне транспортного средства 3 на высоте h над поверхностью и направлены под углом α к направлению движения в вертикальной плоскости, как показано на Фиг. 1, и на угол β в горизонтальной, как показано на Фиг. 2. При этом расстояние между ними равно его ширине l. Оба датчика выделяют сигналы D1(t) и D2(f) с доплеровскими частотами fD1 и fD2, пропорциональными радиальной скорости взаимного перемещения датчиков и подстилающей отражающей поверхности. В результате, скорости перемещения мест расположения датчиков V1 и V2 можно определить по формулам:

Если транспортное средство движется по прямой, совпадающей с его осью, то эти скорости будут равны. Если происходит поворот направо, как показано на Фиг. 2. Тогда скорость V1 будет больше V2, а движение будет происходить по окружности с радиусом R, проходящей через центр транспортного средства. При этом центры левого и правого следов диаграмм направленности антенн датчиков (см. заштрихованные области на Фиг. 2) будут перемещаться по радиусам R + r/2 и R - r/2, где r - расстояние между ними. При этом за некоторый дискретный i-ый одинаковый период времени Т=Δt, перемещения этих проекций по подстилающей поверхности будут определяться выражениями

где Ri, и ωi - текущий радиус и угол поворота транспортного средства (см. Фиг. 3), которые определяются из решения этой системы уравнений (5):

Поскольку, длина хорды Li=2Ri sin(ωi/2), а ϕii/2, то с учетом (6), получим выражение для вектора перемещения:{Li,ϕi}:

Расстояние r можно вычислить из формул решения прямоугольных треугольников (см. Фиг. 1 и Фиг. 2):

где а - расстояние между проекцией датчика на поверхность и центром следа диаграммы направленности его антенны на поверхность в вертикальной плоскости (см. Фиг. 1), b -расстояние между центром следа от диаграммы направленности антенны датчика на поверхности и направлением движения в горизонтальной плоскости (см. Фиг. 2). Если при этом перемещения датчиков S1i, и S2i измерять обычным способом, интегрируя скорости по времени (3), то результат будет не точный. За время интегрирования Δt доплеровские сигналы могут меняться как по частоте, так и по амплитуде из-за неравномерного движения, вибрации, неоднородных отражающих свойств дороги и т.д. Это показано на Фиг. 4а и 4б, где изображен реальный сигнал D(t) и его спектральная плотность в нормализованном виде (периодограмма). Видно, что определить точно максимум спектральной плотности накопленного за время Δt сигнала не представляется возможным. В тоже время, если подсчитать число полупериодов сигнала D(t) за время Δt - N(t) (см. Фиг. 5а и 5б), то пройденный путь можно определить по формуле

с дискретной ошибкой .

Таким образом, формулы (6), с учетом подсчета числа полупериодов сигналов D1(t) и D2(t) и формулы (7) можно преобразовать в выражение для текущего состояния вектора перемещения

где r определяется по формуле (8). Маршрут перемещения транспортного средства при этом будет складываться из всех измеренных векторов перемещения согласно формулам

yi=L1 cosϕ1+L2 cos(w12)+…+Li-1cos(w1+w2+…+ϕi-1)

xi=L1sin ϕ1+L2 sin(w12)+…+Li-1 sin(w1+w2+…+ϕi-1)

Таким образом, прямое вычисление пути по перемещениям без процесса определения доплеровской частоты после спектральной обработки с последующим интегрированием повышает точность определения перемещения.

Способ измерения вектора перемещения, при котором СВЧ волны с длиной волны λ излучают с двух сторон транспортного средства шириной l с высоты h над поверхностью под углом α и β к направлению движения в вертикальной и горизонтальной плоскостях, принимают отраженные волны, выделяют сигналы D(t) и D(t) с доплеровскими частотами на смесителях между излучаемыми и принимаемыми волнами, отличающийся тем, что подсчитывают число полупериодов длин волн доплеровских частот этих сигналов N и N, затем определяют вектор перемещения транспортного средства за время Δt, модуль L и фазу ϕ которого вычисляют по формулам L=r(N+N)sin(ϕ)/(N-N) и ϕ=λ(N-N)90°/πrcos(α)cos(β), где r=l+2hctg(α)tg(β).
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ ИЗМЕРЕНИЯ ВЕКТОРА ПЕРЕМЕЩЕНИЯ ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Показаны записи 101-110 из 276.
27.04.2016
№216.015.37c8

Способ извлечения пресной воды из атмосферного воздуха

Изобретение относится к области сборников атмосферной влаги и может быть использовано для получения пресной воды непосредственно из воздуха. Накапливают воду в емкости (1), выполненной из легкого материала в виде поверхности вращения. Емкость (1) поднимают вверх с помощью аэростата (19)....
Тип: Изобретение
Номер охранного документа: 0002582807
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37ef

Способ определения расходной характеристики гидравлического тракта и устройство для его осуществления

Группа изобретений относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов...
Тип: Изобретение
Номер охранного документа: 0002582486
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3801

Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и...
Тип: Изобретение
Номер охранного документа: 0002582487
Дата охранного документа: 27.04.2016
27.05.2016
№216.015.42c1

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и...
Тип: Изобретение
Номер охранного документа: 0002585320
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46ea

Системная сеть передачи сообщений многомерного тора с хордовыми связями

Изобретение относится к вычислительной технике, в частности к построению системных сетей для суперкомпьютеров в виде многомерных торов. Технический результат изобретения заключается в возможности существенного уменьшения времени доставки сообщений за счет сокращения диаметра сети (расстояния...
Тип: Изобретение
Номер охранного документа: 0002586835
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5348

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в...
Тип: Изобретение
Номер охранного документа: 0002594176
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53e0

Струйно-оптический триггер с раздельными входами и с постоянной памятью

Устройство относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в оптический, а затем в электрический. Струйно-оптический триггер содержит источник и приемник светового потока, проходящего через щелевой канал. В канале располагается вдоль него...
Тип: Изобретение
Номер охранного документа: 0002593934
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.655f

Свч-устройство для защиты кровли от наледей и сосулек

Изобретение относится к области строительства, в частности к устройствам для защиты кровли от наледей и сосулек. Техническим результатом заявляемого технического решения является повышение работоспособности устройства и уменьшение потери СВЧ-мощности при подогреве края кровли с наледями и...
Тип: Изобретение
Номер охранного документа: 0002592312
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6585

Устройство для извлечения пресной воды из атмосферного воздуха

Устройство для извлечения пресной воды из атмосферного воздуха содержит емкость для сбора влаги, выполненную из легкого материала (полипропилена) в виде поверхности вращения, аэростат, поднимающий емкость. Емкость для сбора влаги выполнена из нескольких последовательно расположенных друг над...
Тип: Изобретение
Номер охранного документа: 0002592116
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.676e

Струйно-оптический преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в электрический. Устройство преобразования газоструйного сигнала в оптический содержит источник и приемник светового потока, проходящего через щелевой канал, в котором располагается...
Тип: Изобретение
Номер охранного документа: 0002591876
Дата охранного документа: 20.07.2016
Показаны записи 41-41 из 41.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД