×
02.05.2019
219.017.4863

Результат интеллектуальной деятельности: БЕСКОНТАКТНЫЙ СПОСОБ ИЗМЕРЕНИЯ ПРОЙДЕННОГО ПУТИ

Вид РИД

Изобретение

№ охранного документа
0002686674
Дата охранного документа
30.04.2019
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный результат достигается тем, что в способе измерения пройденного пути, заключающемся в том, что электромагнитные волны с длиной волны λ излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты. Дополнительно к этому отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, в моменты совпадения этих сигналов формируют импульсы, по количеству этих импульсов n вычисляют пройденный путь по формуле L=nλ/2cos(α). 3 ил.

Изобретение относится к измерительной технике, в частности к способам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны бесконтактные радиоволновые способы измерения путевой скорости и, соответственно, пройденного расстояния, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с). В отличие от способов, определяющих расстояние по числу оборотов колеса, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость и расстояние, как результат интегрирования скорости по времени, которое не зависит от скольжения, движения при повороте и пробуксовывании, поскольку измерение производится бесконтактно. Эта информация о реальном перемещении относительно поверхности очень важна для правильной оценки пройденного пути, которая может быть использована в позиционировании транспортного средства при отсутствии сигналов спутниковой навигации. Обычно при реализации способа СВЧ радиоволны с частотой ƒ0 излучаются вперед и под углом α по направлению движения транспортного средства. Отраженные от поверхности дороги электромагнитные волны принимаются или этой же антенной или другой приемной антенной. Затем эти волны смешивают в смесителе с частью излучаемых волн и выделяют сигнал разностной частоты. Частота отраженных волн в процессе движения транспортного средства, поступающая на смеситель, будет отличаться от излучаемой частоты СВЧ волн на доплеровскую частоту ƒD. Эту частоту, пропорциональную скорости движения будет иметь сигнал, выделяемый на смесителе:

где λ0 = с/ƒ0 - длина излучаемой электромагнитной волны, c - скорость света в воздухе. Отсюда скорость можно вычислить из уравнения:

Поскольку при движении скорость постоянно меняется, то пройденное расстояние L за время Т, будет определяться интегралом от мгновенной скорости или доплеровской частоты по времени:

То есть фактически в идеальном случае требуется точное измерение мгновенной доплеровской частоты.

Обычно ƒD определяют по максимуму спектральной плотности доплеровского сигнала, что в условиях движения объекта не может гарантировать точной оценки его скорости и перемещения. Реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α-θ/2≤αi≤α+θ/2 от подстилающей поверхности ΔƒD. Функцию распределения энергии отраженной волны от угла α можно выразить через уравнение радиолокации:

В этой формуле α - угол наклона относительно горизонтальной поверхности, θс - угол направления центра диаграммы направленности антенны (ДНА), A(α) - функция распределения ДНА, R(α)=H/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. A(α) имеет максимум при условии равенства α=θс и симметрична относительно θc. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α=arccos(λ0ƒD/2V) из (1) в E(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала S для данной скорости:

В результате имеет место принципиальное смещение между максимумом спектральной плотности и собственно доплеровской частотой ƒD. Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, а также влияния вибрации и неровностей дороги. Также следует отметить, что вычисление спектра требует времени для накопления данных, что приводит к дискретному измерению скорости. За время записи доплеровского сигнала скорость может меняться. В результате влияния всех этих факторов, доплеровский сигнал будет постоянно меняться по частоте и амплитуде, поэтому результат измерения будет неточным. На Фиг. 1а представлена реальная запись доплеровского сигнала за время Т=1 сек. в относительных единицах и на Фиг. 1б его периодограмма спектральной плотности в нормализованном виде по частотам F=π/ts, где ts - время выборки. Из спектра сигнала видно, что точно определить максимум распределения спектральной плотности за время записи сигнала невозможно, да и сам этот максимум не соответствует точно доплеровской частоте, по которой можно вычислить скорость и соответственно пройденный путь.

С другой стороны для целей позиционирования можно в принципе обойтись без измерения мгновенной частоты, а измерять пройденный путь, подсчитывая число полупериодов текущей доплеровской частоты - n. Тогда пройденное расстояние можно определить по формуле:

Погрешность измерения в этом случае соответствует полуволне излучаемого колебания поделенной на косинус угла α. При этом в процессе вычисления пути уже нет необходимости в измерении мгновенной доплеровской частоты с последующим интегрированием.

Наиболее близким по технической сущности является способ измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятый за прототип. Электромагнитные колебания фиксированной частоты от генератора СВЧ излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной и смешиваются с частью излучаемых электромагнитных колебаний. В результате выделяется доплеровский сигнал, путевая скорость вычисляется по частоте доплеровского сигнала, а пройденный путь определяется по интегрированию этой частоты по времени.

Недостатком способа являются значительные ошибки в определении путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала и дискретным характером измерения. В результате пройденный путь также будет вычислен не точно. Для использования в навигационных системах, системах безопасности и для экономии расхода топлива требуется точное измерение пройденного пути. Для этого необходимо его прямое измерение, например путем подсчета числа периодов сигнала доплеровской частоты. Однако сложный спектральный состав этого сигнала не позволяет сделать это с достаточной точностью.

Техническим результатом настоящего изобретения является повышение точности измерения пройденного пути наземного транспортного средства.

Технический результат достигается тем, что в способе измерения пройденного пути, заключающимся в том, что электромагнитные волны с длиной волны λ0 излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты. Дополнительно к этому отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, в моменты совпадения этих сигналов формируют импульсы, по количеству этих импульсов n вычисляют пройденный путь по формуле L=nλ0/2cos(α).

На Фиг. 1а представлен реальный доплеровский сигнал в течение 1 сек., а на Фиг. 1б его периодограмма спектральной плотности в нормализованном виде.

На Фиг. 2 представлена структурная схема устройства, реализующего способ.

На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя I(t) и Q(t), а также импульсы на выходе компаратора.

Устройство, реализующее способ расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, линия задержки на λ0/4 - 5, первый смеситель 6, второй смеситель 7, компаратор 8, счетчик импульсов 9, вычислительный блок 10 (см. Фиг. 2). Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 11.

Устройство работает следующим образом. От генератора СВЧ сигнал с частотой ƒ0 поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после задержки на λ0/4, что соответствует сдвигу по фазе на угол 90°. В результате на выходе первого и второго смесителя образуются доплеровские сигналы I(t) и Q(t), также сдвинутые между собой по фазе на 90° (см. фиг. 3). Затем сигналы I(t) и Q(t) подаются на входы компаратора, на выходе которого формируются короткие импульсы в моменты совпадения сигналов. Далее эти импульсы подсчитываются счетчиком, а пройденный путь определяется в вычислительном блоке по формуле (5).

Поскольку форма сигнала Q(t), сдвинутого по фазе на 90° относительно сигнала I(t), изменяющегося как по частоте, так и по амплитуде одинакова, то ошибка, вызванная неточностью подсчетов числа периодов сигнала доплеровской частоты, устраняется, а точность определения пути увеличивается. При этом ошибка измерения будет постоянной и равной полуволне электромагнитного колебания, деленной на косинус угла α. При этом фактически измеряется мгновенная доплеровская частота с максимально возможной точностью без вычисления спектра и с максимально возможным быстродействием.

Бесконтактный способ измерения пройденного пути, заключающийся в том, что электромагнитные волны с длиной волны λ излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, отличающийся тем, что отраженные волны пропускают через линию задержки длиной в четверть длины волны электромагнитного колебания, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, в моменты совпадения этих сигналов формируют импульсы, по количеству этих импульсов n вычисляют пройденный путь по формуле L=nλ/2cos(α).
БЕСКОНТАКТНЫЙ СПОСОБ ИЗМЕРЕНИЯ ПРОЙДЕННОГО ПУТИ
БЕСКОНТАКТНЫЙ СПОСОБ ИЗМЕРЕНИЯ ПРОЙДЕННОГО ПУТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 276.
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
Показаны записи 41-41 из 41.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД