×
02.05.2019
219.017.4840

Результат интеллектуальной деятельности: ВАКУУМНО-ДУГОВОЙ СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА РАБОЧЕЕ КОЛЕСО ЦИРКУЛЯЦИОННОГО НАСОСА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу вакуумно-дугового нанесения покрытий на рабочие колеса насосного оборудования парогазовых установок и может быть использовано в энергетическом турбостроении для защиты насосного и компрессорного оборудования от солевой и газовой коррозии. Колесо обезжиривают, промывают, устанавливают в камеру, производят его ионную очистку. Производят вакуумирование камеры, ее нагрев, нанесение покрытия. Колесо устанавливают на вращающуюся карусель, а два дуговых испарителя размещают под углом 60° к плоскости карусели. Перед нанесением покрытия проводят дополнительную обработку поверхности колеса ионами металлов в атмосфере аргона, а последующее нанесение покрытия проводят при вращении колеса. Используют материал испарителя, который содержит алюминий, хром, молибден, бор и титан. Техническим результатом изобретения является повышение качества покрытий, повышение стойкости к газоабразивной и капельно-ударной эрозии, коррозионной стойкости, снижение размера зерен покрытия и коэффициента сухого трения. 4 з.п. ф-лы, 1 пр.

Изобретение относится к нанесению покрытий вакуумным испарением и может быть использовано в энергетическом турбостроении для защиты насосного и компрессорного оборудования от солевой и газовой коррозии, кавитации, газоабразивной и капельно-ударной эрозии, в частности, для нанесения покрытия на рабочие колеса насосного оборудования парогазовых установок (ПТУ).

Известен способ нанесения покрытия системы Ti-Cr-Al на изделия, характеризующийся тем, что нанесение покрытия производится методом вакуумно-дугового испарения при следующем содержании компонентов покрытия, мас. %: титан 52-56, хром 26-28, алюминий 16-20.

(RU 2013144837, С223С 14/00, опубликовано 27.04.2015).

Недостатком известного способа является отсутствие сведений об условиях и режимах его осуществления, поскольку при формировании известного покрытия большой толщины образуется значительное количество капельной фазы, ухудшающей механические свойства покрываемых деталей, в частности, кавитационную стойкость покрытия.

Известен вакуумно-дуговой способ нанесения PVD-покрытия, включающий очистку изделия, сушку, нагрев изделия, нанесение множества покрытий, содержащих титан, кремний, алюминий, цирконий, хром и бор, и охлаждение, причем известными указаны покрытия толщиной до 20 мкм, содержащие сочетания следующих компонентов: TiAlN, TiAlCN, TiAlSiN, CrAlN, AlCrSiN, TiBN.

(CN 108103505, C23C 14/06, C23C1 6/32, опубликовано 01.06.2018).

Наиболее близким по технической сущности является способ получения многослойного PVD-покрытия, включающего в себя, по меньшей мере, один слой, содержащий Si, В, N и металл, выбранный из группы, включающей Al, Cr и Ti, а также, по меньшей мере, один слой, содержащий Si, В, N, О и, по меньшей мере, один металл, выбранный из группы, включающей Al, Cr и Ti. Толщина слоев составляет 5 нм-50000 нм. Покрытие наносят на изнашиваемую часть турбины, шестерню или поршень. Из описания известен слой, содержащий азот и, по меньшей мере, один элемент из группы: Al, Cr, Mo, Ti, В. Известная последовательность нанесения покрытия включает нагрев изделия до температуры 100-1000°С, ионную очистку, нанесение первого PVD-слоя, состава Al40Cr30 или TiAlSiN с использованием дуговых испарителей - катодов диаметром 100 мм при токах разряда 30-200 А и давлении 1-10 Па.

(ЕР 1783245, С23С 14/14, С23С 14/24, опубликовано 09.05.2007).

Недостатком известных способов, включающих нанесение многослойных покрытий, является сложность их осуществления, а также невозможность исключить образование капельной фазы в каждом из формируемых слоев, что неизбежно отражается на качестве последующего слоя покрытия и приводит к снижению качества конечного покрытия.

Задачей и техническим результатом изобретения является повышение качества покрытий получаемых вакуумно-дуговым способом, в частности, повышение стойкости к газоабразивной и капельно-ударной эрозии, коррозионной стойкости, снижение размера зерен покрытия и коэффициента сухого трения.

Технический результат достигают тем, что вакуумно-дуговой способ нанесения покрытия на рабочее колесо циркуляционного насоса, включает обезжиривание, промывки в холодной и горячей воде, установку колеса в камеру, установку дуговых испарителей, вакуумирование камеры, нагрев, ионную очистку, нанесение покрытия, охлаждение и выгрузку, отличающийся тем, что колесо устанавливают на вращающуюся карусель, устанавливают два дуговых испарителя диаметром 150 мм и толщиной 28 мм под углом 60° к плоскости карусели, перед нанесением покрытия проводят дополнительную обработку поверхности колеса ионами металлов в течение 5-8 мин при температуре 550±10°С в атмосфере аргона при давлении (5±1)⋅10-1 Па, напряжении смещения 900±10 В и токе дуговых испарителей менее 50 А, а последующее нанесение покрытия проводят при вращении колеса при напряжении смещения 200±10 В и токе дуговых испарителей 102±8 А в течение 55±0,1 мин, причем материал испарителя содержит алюминий, хром, молибден, бор и титан при следующем соотношением компонентов, мас. %: алюминий 14-19, хром 24-26, молибден 4-7, бор 3-5, титан – остальное.

Технический результат также достигают тем, что после вакуумирования камеры до давления (2000±5)⋅10-5 Па проводят нагрев элементов камеры и колесо до температуры 150-200°С; ионную очистку проводят в течение 20±0,5 мин в атмосфере аргона при давлении на уровне (5±1)⋅10-1 при напряжении электрического смещения на колесе 900±10 В и напряжение на ионном источнике 1500±10 В; нанесение покрытия проводят при вращении карусели с колесом со скорость 2-3 об/мин; охлаждение колеса с покрытием проводят напуском в камеру азота в течение 40 мин.

Изобретение можно проиллюстрировать следующим примером.

Покрытие наносят на рабочее колесо водяного циркуляционного насоса с лопатками из стали 10Х18Н12М3Л.

Процесс нанесения включает:

- обезжиривание в ультразвуковой ванне;

- промывки в холодной и горячей воде;

- монтаж колеса на карусель вакуумной камеры;

- установку испарителей-катодов, прогрев и откачку вакуумной камеры;

- ионную очистку поверхности колеса;

- дополнительную очистку;

- нанесение покрытия;

- охлаждение и выгрузку.

Обезжиривание поверхности колеса проводят в ультразвуковой ванне с использованием моющего средства, например, «ТОР-ХС» при температуре 55±4°С, в течение 20±1 мин.

Промывки проводят поочередно проточной горячей и холодной водой в ванне в течение 2±0,5 минут. Оптимальные температуры для горячей воды 45-55°С, для холодной воды – 20-35°С.

После сушки для нанесения покрытия колесо устанавливают в вакуумную камеру на вращающуюся карусель и два торцевых дуговых испарителя диаметром 150 мм и толщиной 28 мм под углом 60° к плоскости карусели. Затем камеру вакуумируют до давления (2000±5)⋅10-5 Па и проводят нагрев элементов камеры, колесо и испарители до температуры 150-200°С.

После этого поверхность колеса подвергают ионной очистке (травлению) в газовом разряде. Для этого устанавливали давление аргона в камере на уровне (5±1)⋅10-1. Задают напряжение электрического смещения на обрабатываемом колесе 900±10 В. Напряжение на ионном источнике устанавливают 1500±10 В и проводят обработку в течение 20±0,5 мин.

Затем устанавливают температуру в камере 550±10°С, проводят в атмосфере аргона при давлении (5±1)⋅10-1 дополнительную обработку (бомбардировку) поверхности колеса ионами металлов испарителя в течение 5-8 мин, напряжении смещения 900±10 В и токе дуговых испарителей менее 50 А.

Последующее нанесение покрытия проводят при вращении карусели с колесом со скоростью 2-3 об/мин при напряжении смещения 200±10 В и токе дуговых испарителей 102±8 А в течение 55±0,1 мин.

Для нанесения покрытия используют материал испарителя, содержащий алюминий, хром, молибден, бор и титан при следующем соотношением компонентов, мас. %: алюминий 14-19, хром 24-26, молибден 4-7, бор 3-5, титан – остальное. При этом наиболее оптимальным является использование торцевых испарителей-катодов с температурой поверхности 90-200°С при движении катодного пятна по их поверхности со скоростью более 15 м/с, которое устанавливают тангенциальным к поверхности испарителя магнитным полем более 13,7 мТл с помощью магнитных катушек.

После этого проводят охлаждение колеса с покрытием напуском в камеру азота в течение 40 мин и осуществляют выгрузку готового изделия.

Режимы предварительной обработки поверхности под наносимое покрытие и условия охлаждения изделия с покрытием являются оптимальными и обеспечивают высокое качество сцепления наносимого покрытия с подложкой.

Использование двух дуговых испарителей, их размеры и геометрия размещения, относительно изделия, а также условия и режимы нанесение покрытия, обеспечивают получение более равномерного бездефектного покрытия с более мелким размером зерен и снижают образование капельной фазы, что повышает стойкость покрытия к газоабразивной и капельно-ударной эрозии.

Состав материала испарителей, включающий алюминий, хром, молибден, бор и титан, обеспечивает максимальную адгезию покрытия к материалу подложки из стали, в частности, стали 10Х18Н12М3Л.

Покрытие, полученное способом по изобретению, обеспечивает, в сравнении с известными покрытиями системы Ti-Cr-Al, снижение капельной фазы в покрытии, получение размеров зерен в покрытии менее 50 нм, коэффициент сухого трения в паре с контртелом из WC-Co менее 0,9, увеличивает стойкость к газоабразивной и капельно-ударной эрозии в 1,2 раза и обеспечивает полную защиту изделия от межкристаллитной коррозии в условиях воздействия агрессивно среды.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 24.
29.12.2017
№217.015.f6d5

Способ производства стали

Изобретение относится к области металлургии, а именно к производству углеродсодержащих высококачественных сталей, таких как корпусные, роторные, высокопрочные, броневые, подшипниковые, инструментальные, специальные. Способ включает выплавку металла с содержанием углерода более 0,03 мас. %,...
Тип: Изобретение
Номер охранного документа: 0002639080
Дата охранного документа: 19.12.2017
20.01.2018
№218.016.0f54

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, в частности, к сталям для основного оборудования атомных энергетических установок. Теплостойкая радиационно-стойкая сталь содержит, мас. %: углерод 0,10-0,20; кремний 0,02-0,12; марганец 0,02-0,12; хром 1,70-2,10; никель 3,2-5,00; молибден 0,35-0,70;...
Тип: Изобретение
Номер охранного документа: 0002633408
Дата охранного документа: 12.10.2017
20.01.2018
№218.016.1512

Способ получения титансодержащих металлических порошков

Изобретение относится получению титансодержащих металлических порошков. Способ включает травление слитков титансодержащего металлического материала, промывку, гидрирование слитков, измельчение полученного гидрида в порошок, дегидрирование полученного порошка гидрида путем термического...
Тип: Изобретение
Номер охранного документа: 0002634866
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1575

Теплостойкая и радиационно-стойкая сталь

Изобретение относится к области металлургии, а именно к теплостойким радиационно-стойким сталям, используемым для изготовления основного оборудования атомных энергетических установок. Сталь содержит, мас.%: углерод 0,10-0,20, кремний 0,02-0,40, марганец 0,02-0,6, хром 2,0-2,5, никель 1,25-2,0,...
Тип: Изобретение
Номер охранного документа: 0002634867
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.16f6

Модификатор для получения чугуна с шаровидным графитом

Изобретение относится к литейному производству, в частности к составам модификаторов, используемых в производстве легированных чугунов с шаровидным графитом. Модификатор содержит, мас.%: магний 2,0-9,0; церий 6,0-12,0; железо ≤ 1,5; барий 4,0-10,0; алюминий 2,0-4,0; никель остальное....
Тип: Изобретение
Номер охранного документа: 0002635647
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.178a

Способ определения сдвига критической температуры хрупкости сталей для прогнозирования охрупчивания корпусов реакторов типа ввэр

Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники. Способ определения сдвига критической температуры хрупкости сталей включает изготовление...
Тип: Изобретение
Номер охранного документа: 0002635658
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.19b6

Жаропрочный сплав на основе никеля для литья сопловых лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем сопловых (направляющих) лопаток газотурбинных установок с равноосной и монокристаллической структурами, работающих в агрессивных...
Тип: Изобретение
Номер охранного документа: 0002636338
Дата охранного документа: 22.11.2017
10.05.2018
№218.016.3e9a

Хладостойкая сталь

Изобретение относится к сталям для изготовления конструкций оборудования хранения, транспортировки и переработки сжиженных углеводородов и изделий, работающих при криогенных температурах -120°С - -196°С. Сталь содержит 0,03-0,07 мас. % углерода, 0,02-0,20 мас. % кремния, 0,02-0,30 мас. %...
Тип: Изобретение
Номер охранного документа: 0002648426
Дата охранного документа: 26.03.2018
29.01.2019
№219.016.b512

Жаропрочный коррозионно-стойкий сплав на основе никеля для литья крупногабаритных рабочих и сопловых лопаток газотурбинных установок

Изобретение относится к металлургии, в частности, к литейным жаропрочным коррозионно-стойким сплавам на основе никеля и может быть использовано для изготовления литьем с равноосной структурой крупногабаритных толстостенных рабочих и сопловых лопаток газотурбинных установок (ГТУ), работающих при...
Тип: Изобретение
Номер охранного документа: 0002678353
Дата охранного документа: 28.01.2019
29.01.2019
№219.016.b525

Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления литьем деталей горячего тракта газотурбинных установок, например рабочих лопаток газовой турбины с равноосной или монокристаллической...
Тип: Изобретение
Номер охранного документа: 0002678352
Дата охранного документа: 28.01.2019
Показаны записи 1-10 из 10.
27.05.2013
№216.012.44a0

Электрохимический способ получения покрытий на металлическом изделии

Изобретение относится к электрохимической технологии формирования износостойких, диэлектрических, антикоррозионных и декоративных оксидных или оксидно-керамических покрытий на электропроводящие изделия, в частности для нанесения неорганических покрытий на детали и изделия из алюминиевых,...
Тип: Изобретение
Номер охранного документа: 0002483145
Дата охранного документа: 27.05.2013
12.01.2017
№217.015.5d1e

Способ измерения величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после...
Тип: Изобретение
Номер охранного документа: 0002591027
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.d10c

Гель для травления стеклянной оболочки микропроводов

Изобретение относится к химической обработке поверхности аморфных магнитомягких микропроводов диаметром до 35 мкм со стеклянной оболочкой до 10 мкм, предназначенных для изготовления ГМИ-датчиков, в частности к равномерному травлению стеклянной оболочки микропроводов. Гель содержит...
Тип: Изобретение
Номер охранного документа: 0002621336
Дата охранного документа: 02.06.2017
26.10.2018
№218.016.9689

Способ подготовки микропроводов со стеклянной оболочкой для электрического соединения

Изобретение относится к области гальванотехники и может быть использовано в микроэлектронике для изготовления качественных электрических контактов на микропроводах диаметром до 40 мкм со стеклянной оболочкой до 15 мкм, в том числе переменного сечения, использующихся для изготовления ГМИ,...
Тип: Изобретение
Номер охранного документа: 0002670631
Дата охранного документа: 24.10.2018
11.03.2019
№219.016.dcf4

Многослойное жаростойкое покрытие с градиентом алюминия по толщине

Изобретение относится к защитным покрытиям термонагруженных деталей газовых турбин и двигателей внутреннего сгорания. Технический результат изобретения заключается в повышении коррозионной стойкости. Многослойное жаростойкое покрытие выполнено с градиентом алюминия по толщине. Покрытие состоит...
Тип: Изобретение
Номер охранного документа: 0002437962
Дата охранного документа: 27.12.2011
25.04.2019
№219.017.3add

Устройство для нанесения покрытия вакуумно-дуговым испарением

Изобретение относится к устройствам для нанесения покрытий вакуумно-дуговым испарением и может быть использовано при производстве триботехнических изделий и металлорежущего инструмента с функциональными покрытиями легированных карбидных соединений. Устройство содержит вакуумную камеру, систему...
Тип: Изобретение
Номер охранного документа: 0002685828
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bcd

Вакуумно-дуговой способ нанесения покрытия

Изобретение относится к способу нанесения покрытий вакуумно-дуговым испарением и может быть использовано при производстве триботехнических изделий и металлорежущего инструмента с функциональными покрытиями из легированных карбидных соединений. Катод-мишень изготавливают из порошковой смеси ее...
Тип: Изобретение
Номер охранного документа: 0002685913
Дата охранного документа: 23.04.2019
29.06.2019
№219.017.9fe8

Способ получения переменной структуры по сечению порошковой заготовки

Изобретение относится к порошковой металлургии жаропрочных никелевых сплавов. Может использоваться в производстве тяжелонагруженных деталей, работающих в условиях градиента температуры и имеющих переменную по сечению структуру и механические свойства. Заготовку получают путем горячего...
Тип: Изобретение
Номер охранного документа: 0002455115
Дата охранного документа: 10.07.2012
29.06.2019
№219.017.a11c

Многослойное износостойкое термостойкое покрытие

Изобретение относится к области машиностроения, а именно к износостойким термостойким покрытиям на деталях машин. Многослойное износостойкое термостойкое вакуумно-плазменное покрытие экструзионного шнека узла впрыска термопластавтомата состоит из адгезионного слоя из титана, циркония и железа...
Тип: Изобретение
Номер охранного документа: 0002445403
Дата охранного документа: 20.03.2012
12.04.2023
№223.018.43c2

Магниевый сплав и способ получения заготовок для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине

Изобретение относится к области металлургии, конкретно к сплавам на основе магния, а также к получению из них деформируемых заготовок, и может быть использовано для изготовления биорезорбируемых систем фиксации и остеосинтеза твердых тканей в медицине. Магниевый сплав содержит, мас.%: галлий...
Тип: Изобретение
Номер охранного документа: 0002793655
Дата охранного документа: 04.04.2023
+ добавить свой РИД