×
01.05.2019
219.017.47d3

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПЛАЗМЕННОГО ТРАВЛЕНИЯ ПЛАСТИН

Вид РИД

Изобретение

Аннотация: Способ определения параметров плазменного травления материалов в процессе обработки изделий включает измерение параметров модельного образца в виде структуры, образованной первой и второй акустическими линиями задержки (АЛЗ), содержащими входные и выходные электроакустические преобразователи, выполненные на одной грани плоского кристаллического звукопровода, другая противолежащая грань которого открыта для плазменного травления. Моды колебаний АЛЗ выбраны из условия обеспечения различий в зависимости времени задержки от температуры и толщины звукопровода таким образом, чтобы первая АЛЗ обладала большей чувствительностью к температуре и меньшей чувствительностью к изменению толщины звукопровода в процессе травления, а вторая АЛЗ - меньшей чувствительностью к температуре, но большей чувствительностью к изменению толщины звукопровода в процессе травления по отношению к первой АЛЗ. Искомые параметры упомянутого травления определяют по временной зависимости разности откликов выходных преобразователей при подаче сигнала возбуждения на входные преобразователи АЛЗ. Технический результат - снижение уровня пороговых значений и повышение точности измерения параметров плазменного травления с автоматическим учетом текущей температуры процесса. 7 з.п. ф-лы, 6 ил.

Изобретение относится к технологии микроэлектроники и может быть использовано для контроля характеристик плазменной обработки при формообразовании электронных компонентов.

Одними из наиболее распространенных элементов таких компонентов являются периодические канавки и тонкие мембраны, которые обычно изготавливаются методами плазменного/реактивного ионно-лучевого травления. Воспроизводимость процессов травления определяет выход годных изделий и уровень достижимых рабочих характеристик.

Описаны различные способы определения скорости и глубины травления структур в процессе плазменного/реактивного ионно-лучевого травления, при этом используется прямая зависимость увеличения глубины травления с ростом скорости травления. Так, определение глубины травления поверхности в низкотемпературной плазме проводят методом сканирующей зондовой микроскопии (RU 2206882, ЗАО "НТ-МДТ", 20.06.2003).

Описано устройство мониторинга глубины плазменного травления в режиме реального времени LEP400. Устройство содержит видеосистему для контроля подложки и рассчитывает скорость травления и глубину травления в режиме реального времени, позволяя контролировать завершение процесса (http://www.actan.ru/optmc_lep400.html). При этом мониторинг осуществляется через технологическое окно. Прибор может работать в качестве автономного устройства либо интегрироваться в установку плазмохимического травления фирмы Corial (Франция) от OEM-производителя посредством простого и надежного коммуникационного интерфейса http://www.tbs-semi.ru/equipment/plazmokhimiya/corial_200i/.

Известно использование акустических методов для контроля процесса плазменного травления (US 6367329 (B1), Acoustic time of flight and acoustic resonance methods for detecting endpoint in plasma processes, AGERE SYST GUARDIAN CORP., 09.04.2002). Конечную точку процесса плазменного травления определяют с использованием акустической ячейки, прикрепленной к выхлопному отверстию на реакционной камере плазменного реактора. Газ из реакционной камеры течет в акустическую ячейку во время процесса плазменного травления. Акустические сигналы периодически передаются через газ, протекающий в акустической ячейке, и определяют первую скорость для акустических сигналов, связанных с травлением первого слоя материала, сформированного на подложке. После этого конечная точка стадии плазменного травления определяется, когда первая скорость изменяется на вторую скорость, связанную с травлением первого слоя материала через его толщину до его границы с лежащим ниже слоем материала. Газ из реакционной камеры протекает через компрессор перед втеканием в акустическую ячейку для увеличения давления газа в акустической ячейке. Этот косвенный метод не дает информацию о параметрах травления при сложной топологии обрабатываемых изделий, например, при выполнении системы отражательных канавок.

Описано использование светового излучения, которое возникает в процессе взаимодействия плазмы с обрабатываемым материалом для измерения скорости травления пластины и глубины травления в процессе плазменного травления (IES20070301 (А2) - Method and apparatus for measuring the wafer etch rate and etch depth in a plasma etch process. LEXAS RES LTD, 02.04.2008). Способ содержит этапы обнаружения света, генерируемого из плазмы во время процесса травления, фильтрацию обнаруженного света для извлечения модулированного света и обработки обнаруженного модулированного света для определения скорости травления. Однако ввиду малых размеров формируемой топологии канавок способ вряд ли применим.

Известен другой способ контроля глубины травления (US 7892980 (В2) - Apparatus and a method for controlling the depth of etching during alternating plasma etching of semiconductor substrates, TEGAL CORP, 22.02.2011) посредством обнаружения светового сигнала, относящегося к выбранной длине волны, излучаемой плазмой с использованием зондирующего монохроматического светового сигнала. Однако этот способ достаточно сложен и требует серьезного переоборудования технологической камеры.

Известно, что плазмохимическое травление является широко используемым инструментом в технологии акустоэлектронных и пьезоэлектрических компонентов, которое обеспечивает настройку частотных характеристик компонентов. Так, в изобретении JPH0955636 (А) - FREQUENCY ADJUSTMENT METHOD FOR SURFACE ACOUSTIC WAVE ELEMENT AND DEVICE THEREFOR, TOSHIBA CORP., 25.02.1997. Полуфабрикат элемента прибора на поверхностной акустической волне, установленный на несущем приспособлении, переносится в положение для травления в секцию вакуумной обработки. Плазма излучается на полуфабрикат элемента на поверхностной акустической волне (ПАВ), чтобы вытравить верхнюю сторону кристалла для регулировки частоты. Частотная характеристика полуфабриката измененного травлением, измеряется с помощью анализатора, а травление осуществляется плазмой в устройстве 51 управления до тех пор, пока измеренная частота не достигнет желаемой величины.

Однако специфика функционирования пьезо- и акустоэлектронных устройств состоит в том, что «желаемая» рабочая частота определяется не только геометрическими размерами, но и зависимостью частоты самого элемента от его текущей температуры. Иными словами, для обеспечения той же рабочей частоты, которая настроена в процессе плазменной обработки, необходимо учитывать температурный коэффициент скорости (фазы) используемой волны в данном пьезоэлектрическом материале.

Наиболее близким к патентуемому является способ контроля глубины анизотропного травления канавок в полупроводнике и соответственно скорости травления при производстве интегральных схем и полупроводниковых приборов (RU 175042 U1, ЗАО ГРУППА КРЕМНИЙ ЭЛ", 16.11.2017 - прототип). Способ предусматривает изготовление тестового элемента с рядом тестовых канавок от минимального по ширине размера до максимального и со смотровой канавкой. Глубину канавок, а соответственно и скорость травления, определяют цифровым микроскопом визуально, устанавливая образец под углом 45° и осматривая профиль вытравленных тестовых канавок через смотровую канавку. Недостатком способа является сложность и длительность получения искомого параметра.

Настоящее изобретение направлено на решение проблемы повышения достоверности и упрощения реализации способа контроля скорости травления структур посредством плазменного, плазмохимического, плазменного/реактивного ионно-лучевого травления или другого вида обработки в плазменном разряде.

Патентуемый способ определения параметров плазменного травления материалов в процессе обработки изделий включает измерение параметров модельного образца.

Отличие состоит в следующем.

В качестве модельного образца используют структуру, образованную первой и второй акустическими линиями задержки (АЛЗ), содержащими входные и выходные электроакустические преобразователи, выполненные на одной грани плоского кристаллического звукопровода, другая противолежащая грань которого открыта для плазменного/ионно-лучевого травления.

Моды колебаний АЛЗ выбраны из условия обеспечения различий в зависимости времени задержки от температуры и толщины звукопровода таким образом, чтобы первая АЛЗ обладала большей чувствительностью к температуре и меньшей чувствительностью к изменению толщины звукопровода в процессе травления, а вторая АЛ3 - меньшей чувствительностью к температуре, но большей чувствительностью к изменению толщины звукопровода в процессе травления, по отношению к первой АЛЗ.

Искомые параметры упомянутого травления определяют по временной зависимости разности откликов выходных преобразователей при подаче сигнала возбуждения на входные преобразователи АЛЗ.

Способ может характеризоваться тем, что АЛЗ образованы на одном или на разных звукопроводах.

Способ может характеризоваться и тем, что в первой АЛЗ возбуждают моду колебаний поверхностных акустических волн, а во второй АЛЗ - диспергирующую эллиптически поляризованную волну Лэмба или линейно-поляризованные акустические пластинчатые моды колебаний квази-горизонтальной SH, квазипродольной QL или квази-вертикальной QSV поляризации, при этом открытыми для плазменного/ионно-лучевого травления являются упомянутые грани обеих АЛЗ.

Способ может характеризоваться также тем, что в обеих АЛЗ возбуждают диспергирующие эллиптически поляризованные волны Лэмба или линейно-поляризованные акустические пластинчатые моды колебаний квази-горизонтальной SH, квази-продольной QL и квази-вертикальной QSV поляризации, при этом открытой для плазменного/ионно-лучевого травления является упомянутая грань той из АЛЗ, которая имеет пластинчатую моду, характеризующуюся большей чувствительностью к изменению толщины звукопровода в процессе травления.

Способ может характеризоваться также тем, что разность откликов выходных преобразователей АЛЗ определяют по изменению фазы сигнала, а кроме того, тем, что звукопроводы АЛЗ выполнены из пьезоэлектрического кристаллического материала в форме удлиненных пластин, и тем, что электроакустические преобразователи представляют собой встречно-штыревые преобразователи.

Технический результат изобретения - снижение уровня пороговых значений и повышение точности измерения параметров (толщины, скорости) плазменного травления с автоматическим учетом текущей температуры процесса. Преимуществом выбора вида модельной структуры является схожесть элементной базы и принципа функционирования модельного образца с изделиями и процессами основного производства, в котором применено плазменное травление. Используемое в данном описании понятие «плазменное травление» следует распространять на все виды «сухого» травления с использованием, в частности реактивного ионно-плазменного травления, ионно-лучевого травления и пр. технологий.

Существо изобретения поясняется на чертежах, где:

фиг. 1 - принципиальная блок-схема реализации способа;

фиг. 2 - структура АЛЗ, размещенных на одном звукопроводе, вид со стороны преобразователей;

фиг. 3 - структура АЛЗ, размещенных на отдельных звукопроводах, вид со стороны преобразователей;

фиг. 4 - пояснение характера существования ПАВ и пластинчатой моды колебаний (на примере моды SH-поляризации) в разных АЛЗ;

фиг. 5 - пояснение характера существования двух пластинчатых мод колебаний в разных АЛЗ;

фиг. 6 - дисперсионные кривые SH-мод в пластинах кварца с углами Эйлера 0°, 132,75°, 90° (ST,X+90°-срез), n - номер моды.

На фиг. 1 показана блок-схема измерительного устройства для реализации способа, где: 1 - модельная структура, 2, 3 - коммутаторы для подключения первой 4 и второй 5 АЛЗ к измерительному тракту. Тракт содержит перестраиваемый генератор 6 радиочастоты и приемное устройство 7, блок 8 выделения разности откликов, выход которого подключен к блоку 9 управления и обработки данных. Блок 9 синхронизирует работу блоков измерительного устройства. Такие схемы измерений для компонентов акустоэлектронных устройств известны и могут быть реализованы как в импульсном, так и в непрерывном режимах, например, на основе анализаторов четырехполюсников HP 875ES или KEYSIGHT 5061 В.

Модельная структура 1 (фиг. 2, 3) содержит входные 41, 51 и выходные 42, 52 электроакустические преобразователи АЛЗ 4, 5, размещенные на поверхности звукопровода 10. Звукопровод 10 представляет собой плоскую пластину из кристаллического пьезоэлектрика, на одной грани 11 которой размещены указанные электроакустические преобразователи АЛЗ 4, 5, а другая противолежащая грань 12 открыта для плазменной обработки. Именно грань 12 звукопровода 10 и подвергается травлению с уменьшением толщины пластины.

АЛЗ могут быть выполнены как на одной пластине звукопровода 10, так и на двух отдельных звукопроводах 101 и 102.

Акустические моды колебаний, на которых реализованы АЛЗ 4, 5, выбираются, исходя из определенных требований, и именно в этом состоит изобретательский уровень. Моды колебаний АЛЗ выбраны из условия обеспечения различий в зависимости времени задержки от температуры и толщины звукопровода исходя из следующего. Выбранная мода колебаний для АЛЗ 4 должна обладать большей чувствительностью к температуре и меньшей чувствительностью к изменению толщины звукопровода в процессе травления. Выбранная мода колебаний для АЛЗ 5 - меньшей чувствительностью к температуре, но большей чувствительностью к изменению толщины звукопровода в процессе травления по отношению к АЛЗ 4. Имеется в виду та температура нагрева, которая неизбежно сопровождает процесс плазменного травления любого материала.

Искомые параметры упомянутого травления (глубина или скорость травления при заданной апертуре плазменного луча) определяют по временной зависимости разности откликов выходных преобразователей 42 и 52 при подаче сигнала возбуждения на входные преобразователи 41 и 51 АЛЗ 4, 5.

Электроакустические преобразователи выполнены в виде встречно-штыревой структуры с металлическими электродами, размещенными на концах звукопроводов. Конструкция АЛЗ известна из уровня техники. В качестве материалов звукопроводов используются известные кристаллические материалы, обладающие пьезоэлектрическими свойствами, такие как кварц, ниобат лития, танталата лития, германата висмута, сульфид кадмия, лангасит. То есть те материалы, которые будут использоваться в технологии, для которой производится моделирование.

На фиг. 4 поясняется принцип, лежащей в основе одного из вариантов реализации патентуемого способа определения параметров плазменного травления. Травление звукопровода осуществляется со стороны грани 12 в зоне 99, соответственно в этой зоне и осуществляется уменьшение толщины звукопровода.

В том случае, если в АЛЗ 4 возбуждают ПАВ (волны Рэлея), а во АЛЗ 5 -диспергирующие линейно-поляризованные акустические пластинчатые моды колебаний QL-поляризации, то имеет место следующее. АЛЗ 4, в данном случае, представляет собой датчик температуры, поскольку пластина звукопровода 10 под воздействием тепла плазменного источника в зоне 99 изменяет лишь расстояние между электроакустическими преобразователями 41 и 42, а также скорость и время пробега (время задержки) волны между преобразователями АЛЗ 4. Сама ПАВ проникает вглубь звукопровода от грани 11 на расстояние 1-2 длины волны, т.е. на расстояние нескольких десятков мкм и не чувствует изменения геометрии грани 12 (направление распространения ПАВ показано пунктиром 107) при типичных толщинах пластин-звукопроводов 300 и 500 мкм.

В противоположность этому, АЛЗ 5 использует диспергирующие пластинчатые моды акустических колебаний (Лэмба, SH, QL или QSV), возбуждаемые и принимаемые преобразователями 51, 52, которые в сильной мере чувствуют изменение геометрии на грани 12 (условно распространение QL-моды показано пунктирной линией 108) и в слабой мере изменение температуры. Эти колебания представляют собой линейно-поляризованные акустические моды с доминирующим смещением вдоль направления распространения волны [Ivan V. Anisimkin "New type of an acoustic plate modes: quasi-longitudinal normal wave," Ultrasonics, vol. 42, no. 10, p. 1095-1099, 2004; V.I. Anisimkin "New acoustic plate modes with quasi-linear polarizations", IEEE Trans, on Ultrason., Ferroelect, Freq. Contr., vol. 59, no. 10, p. 2363-2367, 2012]. Пластинчатые моды колебаний могут обладать также аномально высоким коэффициентом электромеханической связи [V.I. Anisimkin and N.V. Voronova "Acoustic properties of the film/plate layered structure", IEEE Trans, on Ultrason, Ferroelect., Freq. Contr., vol. 58, no. 3, p. 578-584, 2011; В.И. Анисимкин, H.B. Воронова и др. Структура акустических мод в пьезоэлектрических пластинах со свободными и металлизированными поверхностями // Радиотехника и Электроника, т. 57, №7, с. 808-812, 2012] и аномально большим углом отклонения потока энергии [V.I. Anisimkin. Anisotropy of the Acoustic Plate Modes in ST-Quartz and 128°Y-LiNbO3, IEEE Trans. Ultrason, Ferroelect, Freq. Contr., vol. 61, p. 120132, January 2014].

Указанные пластинчатые моды колебаний применялись для сенсоров аналитических приборов и методика их расчета известна (см., например, RU 2649217 С1, ИРЭ им. В.А. Котельникова РАН, 30.03.2018).

На фиг. 5 поясняется принцип, лежащий в основе другого варианта реализации патентуемого способа, когда обе АЛЗ 4 и 5 используют пластинчатые моды акустических колебаний различных типов, которые по разному «чувствуют» как изменение геометрии на грани 12, так и изменение температуры пластины-звукопровода. Условно наличие в звукопроводе 10 одной SH-моды показано пунктиром 1081, а другой SH-моды - точками 1082.

Способ реализуют следующим образом.

Вначале измеряются отклик АЛЗ 4 Δϕ11 и отклик АЛЗ 5 Δϕ22 на травление используемых пластин звукопроводов 10. Затем определяются: а) температурный нагрев подложки АЛЗ 4 Δt=(1/ТКФ1)Δϕ11 и б) вклад этого нагрева в отклик АЛЗ 5 (ТКФ2/ТКФ1)(Δϕ11), где Δϕ1 и Δϕ2 - величины изменения фазы акустических волн в АЛЗ 4 и АЛЗ 5 в процессе травления (измеряются прибором типа KEYSIGHT 5061Е), ϕ1 и ϕ2 - полные набеги фаз этих волн в АЛЗ 4 и АЛЗ 5, равные 360°L1/2/λ, L1,2 - расстояние между излучающим и приемным ВШП в этих АЛЗ, λ - длина волны. ТКФ1 и ТКФ2 - температурные коэффициенты скорости или фазы волн в подложках АЛЗ 4 и АЛЗ 5, известные для многих материалов [Акустические кристаллы под/ред. М.П. Шаскольской. М: Наука, 1982; Anisimkin V.I., Anisimkin I.V., Voronova N.V., Puchkov Yu.V. General properties of the acoustic plate modes at different temperatures // Ultrasonics. 2015. Vol. 62, no. 9. P. 46-49; Анисимкин В.И., Пятайкин И.И., Воронова H.B., Пучков Ю.В. Температурные характеристики акустических мод в пластинах пьезоэлектрических кристаллов SiO2, LiNbO3, LiTaO3, Bi12GeO20 и Bi12SiO20. Радиотехника и Электроника. 2016. Т. 61. №1. С. 83-88]. Далее вычисляется та часть отклика АЛЗ 5, которая обусловлена только изменением толщины звукопровода, вызванного травлением - то есть величина Δϕ/ϕ=Δϕ22 - (ТКФ2/ТКФ1)(Δϕ11). Зная эту величину и ее зависимость от нормированной толщины звукопровода Н/λ, (дисперсию скорости V используемой пластинчатой моды):

где V0 - начальное значение скорости при толщине Н пластины, вычисляется изменение толщины ΔН звукопровода и скорость травления ΔН/τ, где τ - продолжительность процесса:

Типичный вид дисперсионных кривых пластинчатых волн, демонстрирующих их сильную зависимость от нормированной толщины пластины Н/λ, представлен на фиг. 6. Они получены для SH-мод в пластинах кварца с углами Эйлера 0°, 132,75°, 90° (ST,X+90°-срез), n - номер моды.

Проведенные оценки показывают достижение технического результата в части снижения уровня пороговых значений. При типичных значениях рабочих параметров (L=20 мм, λ=300 мкм, V0=10×106 мм/с, пороговое значение Δϕ=1 град, ϕ=360°L/λ=24000°, dV/d(H/λ)=107 мм/с) минимальное пороговое значение ΔН составляет 0,0125 мкм (при типичных толщинах пластин-звукопроводов Н=300 и 500 мкм).


СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПЛАЗМЕННОГО ТРАВЛЕНИЯ ПЛАСТИН
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПЛАЗМЕННОГО ТРАВЛЕНИЯ ПЛАСТИН
Источник поступления информации: Роспатент

Показаны записи 41-50 из 91.
26.08.2017
№217.015.dc7b

Способ измерения теплового импеданса светодиодов

Изобретение относится метрологии, в частности к технике измерения тепловых параметров светодиодов. Через светодиод пропускают последовательность импульсов греющего тока I, широтно-импульсно модулированную по гармоническому закону, с частотой модуляции Ω и глубиной модуляции ; во время действия...
Тип: Изобретение
Номер охранного документа: 0002624406
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dcc2

Быстродействующий измеритель амплитуды квазисинусоидальных сигналов

Изобретение относится к области измерительной техники, а именно к непрерывным измерениям с высокой точностью текущих значений амплитуды низкочастотных синусоидальных сигналов, достаточно медленно изменяющихся во времени по амплитуде и частоте. Быстродействующий измеритель амплитуды...
Тип: Изобретение
Номер охранного документа: 0002624413
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e379

Устройство для непрерывного неинвазивного измерения кровяного давления

Изобретение относится к медицинской технике. Устройство для непрерывного неинвазивного измерения кровяного давления содержит установленный в корпусе (11) аппликатор (10), выполненный в виде заполненной жидкостью (15) полости (12) с гибкой мембраной (13) для обеспечения механического контакта с...
Тип: Изобретение
Номер охранного документа: 0002626319
Дата охранного документа: 25.07.2017
29.12.2017
№217.015.f0ae

Криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приёмных систем

Использование: для приема и генерации излучения в диапазоне частот 100 ГГц - 1 ТГц. Сущность изобретения заключается в том, что криогенный перестраиваемый генератор гетеродина субтерагерцового диапазона для интегральных приемных систем на основе РДП, изготовленный на подложке из...
Тип: Изобретение
Номер охранного документа: 0002638964
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fc24

Пневматический сенсор для непрерывного неинвазивного измерения артериального давления

Изобретение относится к медицинской технике. Сенсор для непрерывного измерения артериального давления содержит аппликатор (1), рабочую камеру (11) с датчиком давления (20), подключенным через АЦП (321) к микроконтроллеру (32), который связан с воздушным насосом (40, 42) и устройством...
Тип: Изобретение
Номер охранного документа: 0002638712
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.073d

Свч-способ измерения концентрации водных растворов

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях. Способ...
Тип: Изобретение
Номер охранного документа: 0002631340
Дата охранного документа: 21.09.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
20.01.2018
№218.016.1297

Оротрон

Изобретение относится к радиоэлектронике, в частности к конструкции источника высокочастотных электромагнитных колебаний коротковолновой части миллиметрового и субмиллиметрового диапазона волн. Технический результат - увеличение КПД открытого резонатора оротрона и, как следствие, увеличение КПД...
Тип: Изобретение
Номер охранного документа: 0002634304
Дата охранного документа: 25.10.2017
10.05.2018
№218.016.41c8

Гибридный акустический сенсор системы электронный нос и электронный язык

Использование: для физико-химического анализа жидких и газообразных сред с использованием акустических волн. Сущность изобретения заключается в том, что акустический сенсор системы электронный нос и электронный язык содержит плоскопараллельную пластину из пьезоэлектрического кристалла с...
Тип: Изобретение
Номер охранного документа: 0002649217
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.45d6

Способ спектроскопического анализа газовых смесей и спектрометр для его осуществления

Изобретение относится к исследованию и анализу газов с помощью электромагнитного излучения. Спектрометр состоит из последовательно размещенных источника микроволнового излучения, ячейки с исследуемым газом, приемной системы, включающей в себя детектор и блок обработки сигнала, и блока...
Тип: Изобретение
Номер охранного документа: 0002650354
Дата охранного документа: 11.04.2018
Показаны записи 1-7 из 7.
27.09.2013
№216.012.70b0

Способ изготовления резонаторов на поверхностных акустических волнах

Областью применения изобретения является микроэлектроника, а более конкретно микроэлектроника интегральных пьезоэлектрических устройств на поверхностных акустических волнах (ПАВ)-резонаторов, которые находят широкое применение в авионике и бортовых системах, телекоммуникации и т.д. Способ...
Тип: Изобретение
Номер охранного документа: 0002494499
Дата охранного документа: 27.09.2013
25.08.2017
№217.015.9f31

Акустокалориметрический сенсор для сигнализации изменений газового состава замкнутых помещений

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен...
Тип: Изобретение
Номер охранного документа: 0002606347
Дата охранного документа: 10.01.2017
19.01.2018
№218.016.0c15

Чувствительный элемент для акустического жидкостного сенсора

Изобретение относится к метрологии, в частности к акустическим датчикам. Чувствительный элемент для акустического жидкостного сенсора содержит плоскую пластину из монокристаллического кремния, пьезоэлектрический материал, нанесенный на поверхность пластины и связанный с системой...
Тип: Изобретение
Номер охранного документа: 0002632575
Дата охранного документа: 06.10.2017
10.05.2018
№218.016.41c8

Гибридный акустический сенсор системы электронный нос и электронный язык

Использование: для физико-химического анализа жидких и газообразных сред с использованием акустических волн. Сущность изобретения заключается в том, что акустический сенсор системы электронный нос и электронный язык содержит плоскопараллельную пластину из пьезоэлектрического кристалла с...
Тип: Изобретение
Номер охранного документа: 0002649217
Дата охранного документа: 30.03.2018
20.03.2019
№219.016.e819

Способ настройки резонатора на поверхностных акустических волнах

Изобретение относится к микроэлектронике и может быть использовано в технологии изготовления интегральных пьезоэлектрических устройств (фильтры, резонаторы, линии задержки на поверхностных акустических волнах (ПАВ)), которые находят широкое применение в авионике и бортовых системах,...
Тип: Изобретение
Номер охранного документа: 0002452079
Дата охранного документа: 27.05.2012
29.06.2019
№219.017.a016

Способ определения характеристик жидкости и устройство для его осуществления

Использование: для определения характеристик жидкости. Сущность заключается в том, что возбуждают в пластинчатом звукопроводе из кристаллического пьезоэлектрика акустические пластинчатые моды колебаний, приводят указанный звукопровод в контакт с тестируемой жидкостью и регистрируют параметры...
Тип: Изобретение
Номер охранного документа: 0002408881
Дата охранного документа: 10.01.2011
04.02.2020
№220.017.fd2f

Акустический мультиканальный анализатор микропроб жидких сред

Использование: для анализа жидких сред, в том числе биологических жидкостей. Сущность изобретения заключается в том, что анализатор содержит пьезоэлектрическую пластину, в центральной части которой расположен излучающий ВШП. По обе стороны пластины по направлению излучения с зазором размещены...
Тип: Изобретение
Номер охранного документа: 0002712723
Дата охранного документа: 31.01.2020
+ добавить свой РИД