×
01.05.2019
219.017.47cb

Результат интеллектуальной деятельности: Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки. Предложен способ теплового нагружения неметаллических элементов конструкций летательных аппаратов, включающий контактный нагрев поверхности конструкции, измерение температуры в контрольном сечении и равномерное прижатие нагревателя к конструкции через слой теплоизоляции. Воспроизведение заданного режима теплового нагружения обеспечивается регулированием мощности электрического тока, пропускаемого через нагреватель, расположенный на поверхности конструкции и представляющий собой последовательно-параллельное относительно электрических шин соединение гибких электропроводящих элементов. При этом создание требуемого распределения тепловой энергии теплового поля на поверхности конструкции обеспечивается соответствующей выкладкой электропроводящих элементов нагревателя по координатам конструкции, изготовленных с учетом требуемой величины сопротивления каждого отдельного элемента нагревателя, определяемого расчетным методом. Технический результат - повышение точности воспроизведения тепловых режимов стендовых испытаний неметаллических элементов конструкций ЛА, в том числе имеющих сложную не осесимметричную геометрическую форму нагреваемой поверхности. 3 ил.

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки.

Для подтверждения работоспособности конструкций ЛА в условиях аэродинамического нагрева известны способы теплового нагружения с применением баллистических, плазменных установок и аэродинамических труб, однако их использование требует значительных материальных затрат и приводит к существенному увеличению трудоемкости испытаний, что не оправданно на этапах опытно-конструкторских работ и в процессе серийного производства отдельных элементов конструкций ЛА.

В связи с этим в процессе наземной отработки конструкций ЛА при проведении теплопрочностных и других испытаний используют способы теплового нагружения, в основе которых лежат твердотельные или газорязрядные излучатели, позволяющие с требуемой точность воспроизводить заданный по режиму падающий тепловой поток [Материалы для электротехнических установок: Справочное пособие / Н.В. Большакова, К.С. Борисанова, В.И. Бурцев и др. - М.: Энергоатомиздат, 1987. - 296 с.; Газоразрядные источники света / Г.Н. Рохлин. - М.-Л.: Энергия, 1966. - 216 с.].

В настоящее время широкое распространение получили испытательные стенды и установки, использующие способы радиационного теплового нагружения, реализуемые посредством инфракрасных лучистых излучателей (кварцевых ламп) [патент РФ №2440700 С1, МПК Н05В 3/44, опубл. 20.01.2012 г.; патент РФ №2612887 С1, МПК G01N 25/72, опубл. 13.03.2017 г.], а также с использованием, так называемых, контактных (гибких) излучателей [патент РФ №2456568 С1, МПК G01M 9/04, G01N 25/72, опубл. 20.07.2012 г.; патент РФ №2599460 С1, МПК G01N 25/72, G01M 9/04, опубл. 10.10.2016 г.].

Недостатком указанных способов является недостаточная точность воспроизведения заданных режимов испытаний и неравномерность нагрева.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ тепловых испытаний обтекателей ракет из неметаллических материалов [патент РФ №2571442 С1, МПК G01N 25/72, G01M 9/04, опубл. 20.12.2015 г.].

Способ включает контактный нагрев всей поверхности и измерение температуры в одном сечении, распределение температуры по окружности изделия задается несколькими электропроводящими секторами постоянной толщины, покрывающими всю поверхность обтекателя и выполненными по форме наружной поверхности обтекателя, разделенной продольными меридианными линиями, причем все электропроводящие сектора соединены в электрическую цепь параллельно и пересекаются у носка, где монтируется одна из электрических шин, а вторая электрическая шина охватывает все сектора ниже торца обтекателя, причем для стабилизации термического контакта наружная поверхность нагревателя равномерно прижимается по всей поверхности через слой теплоизоляции.

Основным недостатком данного способа теплового нагружения является отсутствие возможности воспроизведения тепловых полей сложных конфигураций, изменяющих величину падающего теплового потока как в меридианном, так и в окружном и других направлениях конструкций ЛА, что существенно снижает точность выполнения программ наземных стендовых испытаний и достоверность их результатов.

Техническим результатом заявляемого изобретения является повышение точности воспроизведения тепловых режимов стендовых испытаний неметаллических элементов конструкций ЛА, в том числе имеющих сложную (не осесимметричную) геометрическую форму нагреваемой поверхности.

Технический результат достигается тем, что предложен способ теплового нагружения неметаллических элементов конструкций летательных аппаратов, включающий контактный нагрев поверхности конструкции, измерение температуры в контрольном сечении и равномерное прижатие нагревателя к конструкции через слой теплоизоляции, отличающийся тем, что воспроизведение заданного режима теплового нагружения обеспечивается регулированием мощности электрического тока, пропускаемого через нагреватель, расположенный на поверхности конструкции и представляющий собой последовательно-параллельное (относительно электрических шин) соединение гибких электропроводящих элементов, при этом создание требуемого распределения тепловой энергии (теплового поля) на поверхности конструкции обеспечивается соответствующей выкладкой электропроводящих элементов нагревателя по координатам конструкции, изготовленных с учетом требуемой величины сопротивления каждого отдельного элемента нагревателя, определяемого по формуле:

где Δli - шаг разбиения поверхности конструкции в меридианном направлении;

i=1…n, n - количество участков разбиения в меридианном направлении;

Δϕj - шаг разбиения поверхности конструкции в окружном направлении;

j=1…k, k - количество участков разбиения в окружном направлении;

- матрица распределения сопротивления элементов нагревателя;

- матрица распределения заданного температурного поля на поверхности конструкции;

I - сила тока, пропускаемого через нагреватель;

ck(Т) - удельная теплоемкость материала нагреваемой конструкции;

- масса элемента конструкции, контактирующего с соответствующим элементом нагревателя

- коэффициент передачи тепловой энергии от элемента нагревателя с сопротивлением к элементу конструкции массой ;

tmax - момент времени, соответствующий максимальной силе тока I.

Для вывода формулы (1) проведено разбиение гибкого нагревателя, расположенного на поверхности нагреваемой конструкции ЛА, имеющей, к примеру, конусообразную форму, на участки. Разбиение проводилось на i×j количество элементов (фиг. 1).

При этом i=1…n - количество участков разбиения нагревателя в меридианном направлении с шагом равным Δl (фиг. 1а), то есть:

где L - длина образующей конструкции ЛА;

Δli - шаг разбиения поверхности конструкции в меридианном направлении;

j=1…k - количество участков разбиения в окружном направлении с шагом Δϕ (фиг. 1б), то есть:

где D - диаметр основания конструкции ЛА;

Δϕi - шаг разбиения поверхности конструкции в окружном направлении.

Из фиг. 1в видно, что

есть матричное представление распределения сопротивления нагревателя, расположенного на боковой поверхности конусообразной конструкции ЛА.

Рассмотрим отдельный элемент нагревателя, образованный разбиением участков Δli-1-Δli и Δϕj-1-Δϕj, то есть элемент нагревателя, имеющий сопротивление

Мощность электрического тока, проходящего через рассматриваемый элемент нагревателя равна:

Ввиду того, что электрический ток проходит по неподвижному проводнику, вся работа, совершаемая током, уходит на нагрев проводника, то есть:

где - общее количество тепловой энергии, выделяемой в элементе нагревателя, имеющего сопротивление t - время.

Количество тепловой энергии передающейся на поверхность конструкции ЛА, характеризуется коэффициентом передачи равным отношению к общему количеству тепловой энергии то есть:

Коэффициент передачи зависит от теплофизических свойств материала конструкции ЛА и характеристик используемой при нагреве внешней теплоизоляции. На практике определяется расчетным путем с последующей корректировкой по результатам экспериментов.

По определению теплоемкости материала количество тепловой энергии определяется исходя из соотношения:

где ck(Т) - удельная теплоемкость материала конструкции ЛА, зависящая от температуры.

Тогда из соотношений (2), (3) и (4) следует, что элементы матрицы распределения сопротивления нагревателя определяют из соотношения:

При расчете нагревателя и построении матрицы сопротивлений используют значение силы тока I соответствующее максимальной силе тока Imax достигаемой на нагревательной установке или стенде в фиксированный момент времени t=tmax.

Построенная исходя из соотношения (5) матрица сопротивлений используются на практике при изготовлении контактного нагревателя для создания требуемого распределения электрического сопротивления, позволяющего воспроизводить тепловое поле заданной конфигурации.

Способ иллюстрирует схема, приведенная на фиг. 2. Изготовленный согласно матрице сопротивлений контактный нагреватель 3 устанавливают на внешней поверхности нагреваемой конструкции 2 путем прижатия к конструкции через теплоизоляционный слой 4. Тепловое нагружения конструкции 2 тепловым полем заданной конфигурации осуществляется путем пропускания через нагреватель 3 электрического тока, подводимого к нагревателю посредством электрических шин 1. Воспроизведение режима теплового нагружения во времени осуществляется путем регулирования мощности электрического тока по показанием одной или нескольких термопар 5, установленных на внешней поверхности конструкции 2 в контрольной зоне. Измерение температуры в остальных зонах конструкции при этом осуществляется с помощью термопар, расположенных на поверхности конструкции в соответствующих зонах.

На фиг. 3 приведен пример схемы распределения теплового поля, падающего на внешнюю поверхность головного элемента конструкции высокоскоростного ЛА (3а - наветренная сторона конструкции; 3б - подветренная стороны конструкции), воспроизведение которого может быть реализовано предлагаемым способом при наземной лабораторно-стендовой отработке конструкции. На схеме условно показан числовой эквивалент величины плотности теплового потока, падающего на соответствующую зону конструкции.

Предлагаемый способ позволяет повысить точность выполнения программ тепловых испытаний высокоответственных конструкций ЛА, надежность, достоверность и информативность результатов испытаний.

Способ может найти широкое применение при проведении теплопрочностных, а также комплексных термовакуумных и термовибрационных испытаний конструкций ЛА, имеющих сложную геометрическую форму и (или) сложную конфигурацию воспроизводимого теплового поля.


Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Способ теплового нагружения неметаллических элементов конструкций летательных аппаратов
Источник поступления информации: Роспатент

Показаны записи 111-120 из 136.
05.09.2019
№219.017.c790

Способ повышения надежности крепления датчика температуры к поверхности керамических материалов

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний керамических обтекателей ракет при радиационном нагреве. Заявлен способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий крепление спаянных...
Тип: Изобретение
Номер охранного документа: 0002699037
Дата охранного документа: 03.09.2019
06.09.2019
№219.017.c7f9

Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий

Изобретение относится к автоматизированным системам управления технологическими процессами производства. Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий, содержит взаимосвязанные между собой персональные компьютеры, управляющие контроллеры...
Тип: Изобретение
Номер охранного документа: 0002699330
Дата охранного документа: 04.09.2019
02.10.2019
№219.017.cbb8

Способ неразрушающего контроля монолитного листа совместно с клеевым слоем в многослойных конструкциях из полимерных композиционных материалов

Использование: для контроля конструкций из полимерных композиционных материалов (ПКМ). Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов, либо в материал листа в соединении «лист - заполнитель», регистрацию сигналов,...
Тип: Изобретение
Номер охранного документа: 0002701204
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cc85

Образец для оценки прочности клеевых соединений при сдвиге

Изобретение относится к испытательной технике, а именно к образцам для контроля и исследования прочности клеевых соединений при сдвиге конструкционных материалов склеенных внахлест, в том числе в условиях высоких температур. Образец для оценки прочности клеевых соединений при сдвиге, содержащий...
Тип: Изобретение
Номер охранного документа: 0002701201
Дата охранного документа: 25.09.2019
12.10.2019
№219.017.d4e6

Способ селективной сборки обтекателей

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении обтекателей высокоскоростных летательных аппаратов различных классов с оболочками из жаростойких керамических материалов. Способ селективной сборки обтекателей включает определение величины...
Тип: Изобретение
Номер охранного документа: 0002702552
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d557

Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает...
Тип: Изобретение
Номер охранного документа: 0002702695
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d5ba

Антенный обтекатель с совмещенными радио- и оптическим каналами

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей ракет класса «воздух-поверхность» или «воздух-воздух». Антенный обтекатель с совмещенными радио- и оптическим каналами включает тонкостенную оболочку из...
Тип: Изобретение
Номер охранного документа: 0002702807
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d626

Применение полисилоксановых герметиков в качестве конструкционных клеев в керамических ракетных обтекателях

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому...
Тип: Изобретение
Номер охранного документа: 0002703214
Дата охранного документа: 15.10.2019
17.10.2019
№219.017.d6d5

Установка моллирования стеклянных полусфер

Изобретение относится к установке моллирования стеклянных полусфер. Установка моллирования стеклянных полусфер содержит камеру нагрева, под с противовесами, выполненный составным, состоящим из центральной части, соединенной со штоком, и краевой части с фиксаторами ее положения, механизм подъема...
Тип: Изобретение
Номер охранного документа: 0002703053
Дата охранного документа: 15.10.2019
19.10.2019
№219.017.d835

Способ тепловых испытаний элементов летательных аппаратов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет, в наземных условиях. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002703491
Дата охранного документа: 17.10.2019
Показаны записи 111-120 из 162.
23.08.2019
№219.017.c2f6

Способ адаптивной механической обработки керамических изделий на специальных станках с чпу

Изобретение относится к области механической обработки изделий из различных материалов и может быть использовано при обработке изделий из керамики. Осуществляют адаптивную механическую обработку керамических изделий на станках с ЧПУ, которая включает установку заготовки на станке, измерение...
Тип: Изобретение
Номер охранного документа: 0002698008
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c338

Способ механической обработки крупногабаритных сложнопрофильных керамических изделий

Изобретение относится к области абразивной обработки и может быть использовано при механической обработке крупногабаритных сложнопрофильных керамических изделий. Используют оправку с узлами фиксации, которую устанавливают на токарном станке. На узлы фиксации оправки наносят поверхностный слой...
Тип: Изобретение
Номер охранного документа: 0002698009
Дата охранного документа: 21.08.2019
03.09.2019
№219.017.c6ce

Широкополосный антенный обтекатель

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «воздух-поверхность». Техническим результатом является обеспечение заданных радиотехнических характеристик в сверхширокополосном...
Тип: Изобретение
Номер охранного документа: 0002698956
Дата охранного документа: 02.09.2019
05.09.2019
№219.017.c790

Способ повышения надежности крепления датчика температуры к поверхности керамических материалов

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний керамических обтекателей ракет при радиационном нагреве. Заявлен способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий крепление спаянных...
Тип: Изобретение
Номер охранного документа: 0002699037
Дата охранного документа: 03.09.2019
06.09.2019
№219.017.c7f9

Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий

Изобретение относится к автоматизированным системам управления технологическими процессами производства. Программно-аппаратный управленческий комплекс, интегрированный в производство керамических изделий, содержит взаимосвязанные между собой персональные компьютеры, управляющие контроллеры...
Тип: Изобретение
Номер охранного документа: 0002699330
Дата охранного документа: 04.09.2019
12.10.2019
№219.017.d4e6

Способ селективной сборки обтекателей

Изобретение относится к области авиационной и ракетной техники и может быть использовано при изготовлении обтекателей высокоскоростных летательных аппаратов различных классов с оболочками из жаростойких керамических материалов. Способ селективной сборки обтекателей включает определение величины...
Тип: Изобретение
Номер охранного документа: 0002702552
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d557

Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол и устройство для его реализации

Изобретение относится к области контрольно-измерительной техники, в частности к устройствам для контроля температурной зависимости вязкости и характеристических температур стекол. Способ быстрого определения температурной зависимости вязкости и характеристических температур стекол включает...
Тип: Изобретение
Номер охранного документа: 0002702695
Дата охранного документа: 09.10.2019
15.10.2019
№219.017.d5ba

Антенный обтекатель с совмещенными радио- и оптическим каналами

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей ракет класса «воздух-поверхность» или «воздух-воздух». Антенный обтекатель с совмещенными радио- и оптическим каналами включает тонкостенную оболочку из...
Тип: Изобретение
Номер охранного документа: 0002702807
Дата охранного документа: 11.10.2019
17.10.2019
№219.017.d626

Применение полисилоксановых герметиков в качестве конструкционных клеев в керамических ракетных обтекателях

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому...
Тип: Изобретение
Номер охранного документа: 0002703214
Дата охранного документа: 15.10.2019
19.10.2019
№219.017.d835

Способ тепловых испытаний элементов летательных аппаратов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет, в наземных условиях. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002703491
Дата охранного документа: 17.10.2019
+ добавить свой РИД