×
29.04.2019
219.017.4688

Результат интеллектуальной деятельности: СПОСОБ ТЕЛЕУПРАВЛЕНИЯ РАКЕТОЙ

Вид РИД

Изобретение

№ охранного документа
0002465535
Дата охранного документа
27.10.2012
Аннотация: Изобретение относится к ракетной технике и может быть использовано в комплексах вооружения телеуправляемых ракет. Технический результат - расширение функциональных возможностей. Для достижения данного результата до запуска ракеты формируют в функции времени полета ракеты пороговые значения допустимой управляющей перегрузки ракеты. После запуска ракеты формируют в функции времени полета ракеты текущее значение располагаемой перегрузки ракеты, по командам управления ракетой в каналах тангажа и рыскания до их ограничения определяют с учетом программного значения коэффициента передачи разомкнутого контура управления ракетой текущую потребную перегрузку для наведения ракеты на цель. Сравнивают текущее значение располагаемой перегрузки ракеты с текущим пороговым значением допустимой управляющей перегрузки ракеты и с текущим значением допустимой перегрузки и по результатам сравнения определяют коэффициент ограничения, пропорционально которому преобразуют команды управления ракетой в каналах тангажа и рыскания. 2 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике и предназначено для использования в системах наведения телеуправляемых ракет.

Известен способ телеуправления ракетой, включающий измерение координат цели и ракеты, формирование опорной траектории наведения ракеты, определение динамической ошибки наведения ракеты по опорной траектории, формирование линейного рассогласования между ракетой и опорной траекторией, формирование пропорциональной этому рассогласованию команды управления ракетой, корректирование команды управления на величину динамической ошибки наведения по опорной траектории и наведение ракеты на цель по сформированной команде управления ([1], A.A.Лебедев, В.А.Карабанов. Динамика систем управления беспилотными летательными аппаратами. М.: Машиностроение, 1965, с.322-329, 365-371).

В известном способе определенной команде управления соответствует определенная развиваемая нормальная перегрузка ракеты. Максимальная величина команды управления и максимальная нормальная перегрузка, испытываемая ракетой, не должны превосходить некоторых предельно допустимых значений, определяемых соответственно условиями функционирования аппаратуры управления и прочностью ракеты. Данный способ не включает в себя ограничения по командам управления и допустимой перегрузке ракеты и этим определяются его недостатки.

Известен способ управления ракетой, включающий формирование системой управления ракетой команды управления на привод рулей управления ракетой, отклонение рулей управления приводом на соответствующий угол и механическое ограничение угла отклонения рулей до заданного постоянного значения ([1], с.148-150).

Известный способ позволяет обеспечить ограничение максимальных нормальных перегрузок, испытываемых ракетой в процессе наведения, только в узком диапазоне скоростей и высот полета и к тому же механическое ограничение угла отклонения рулей может приводить к возникновению ударных нагрузок на ракету, чем и определяются его недостатки.

Известен способ управления ракетой, включающий формирование системой управления ракетой команды управления на привод рулей управления ракетой, отклонения рулей приводом на соответствующий угол, организацию обратной связи по перегрузке ракеты с использованием датчика нормальных ускорений (перегрузок), корректирование сигнала управления в цепи обратной связи посредством нелинейного преобразования и подачу его на вход привода рулей управления ракетой ([1], с.262-263).

В известном способе посредством ограничения сигнала управления в системе активной стабилизации ракеты ограничивается угол отклонения рулей ракеты и соответственно обеспечивается ограничение развиваемой максимальной нормальной перегрузки ракеты. При этом требуется введение в состав ракеты датчика нормальных ускорений (перегрузок), что усложняет ее конструкцию, снижает надежность, а также может привести к нарушению устойчивости управления ракетой. К тому же этот способ неприменим для класса ракет, в которых отсутствует система активной стабилизации, а их стабилизация осуществляется за счет аэродинамических свойств ракеты. Указанные обстоятельства определяют недостаток данного способа управления.

В качестве прототипа принят способ телеуправления ракетой ([2], патент РФ №2188381), включающий измерение отклонения ракеты относительно опорной траектории, определение оценок отклонения и производной отклонения ракеты относительно опорной траектории, формирование сигнала коррекции по отклонению ракеты относительно опорной траектории пропорционально линейной комбинации оценок отклонения и производной отклонения, вычисление сигнала ускорения ракеты, пропорционального сигналу коррекции, и учет его при определении оценок отклонения и производной отклонения ракеты, формирование сигнала динамической ошибки наведения ракеты при движении по опорной траектории наведения, ограничение сигналов коррекции по отклонению ракеты и формирование суммарной команды управления ракетой с учетом сигнала коррекции и сигнала динамической ошибки наведения ракеты.

В известном способе ограничивается только одна составляющая команды управления - сигнал коррекции отклонения ракеты относительно опорной траектории. Вместе с тем другая составляющая команды управления - сигнал динамической ошибки, определяемый параметрами движения цели и летно-баллистическими характеристиками ракеты и направленный на компенсацию динамической ошибки движения ракеты по опорной траектории, может, особенно при скоростных целях, определить такое значение суммарной команды управления, при котором максимальная развиваемая нормальная перегрузка ракеты будет выходить за допустимые пределы, определяемые ее прочностью.

В таком способе уровень ограничения сигнала управления задается постоянным. Для высокоскоростных ракет, предназначенных для перехвата целей в широких диапазонах скоростей и высот, имеется потребность в переменных уровнях ограничения развиваемой максимальной перегрузки (команды управления), так как их располагаемая перегрузка (маневренность) существенно зависит от текущего времени и условий полета ракеты. Так, для ракет с отделяющимся разгонным двигателем, имеющих два участка траектории - активный и пассивный, с целью обеспечения требуемых максимальных нормальных перегрузок в конце управляемого пассивного участка, ракета должна на начальном участке пассивного полета иметь такую величину располагаемой нормальной перегрузки, которая, как правило, превосходит пределы допустимых значений, определяемых прочностью. При этом сам процесс разделения ракеты из-за возникновения возмущений требует для сохранения прочности ракеты и качества ее вывода на кинематическую (опорную) траекторию наведения еще более глубокого ограничения развиваемой ракетой перегрузки. Поэтому развиваемая нормальная перегрузка ракеты на траектории полета должна иметь разные текущие уровни ограничений по времени полета ракеты.

Кроме того, в этом способе ограничение сигналов управления проводится в каждом канале управления (каналах тангажа и рыскания) независимо друг от друга. Такое ограничение для вращающихся по крену ракет в случае, когда модуль вектора команд в двух каналах управления требует от ракеты развивать нормальную перегрузку, большую по величине, чем располагаемая перегрузка ракеты или перегрузка, определяемая заданным уровнем ограничения, в контуре управления ракетой будет вызывать фазовую ошибку, приводящую к связи каналов управления и, соответственно, к снижению точности наведения ракеты.

Задачей предлагаемого изобретения является повышение динамической точности телеуправления ракетой и расширение границ и условий ее применения.

Поставленная задача решается тем, что в способе телеуправления ракетой, включающем в каналах тангажа и рыскания измерение линейного отклонения ракеты относительно опорной траектории наведения, определение оценок отклонения и производной отклонения ракеты относительно опорной траектории наведения, формирование сигнала коррекции по отклонению ракеты относительно опорной траектории пропорционально линейной комбинации оценок отклонения и производной отклонения, вычисление сигнала ускорения ракеты, пропорционального сигналу коррекции, и учет его при определении оценок отклонения и производной отклонения ракеты, формирование сигнала динамической ошибки наведения ракеты при движении по опорной траектории наведения, формирование команды управления ракетой с учетом сигнала коррекции по отклонению ракеты и сигнала динамической ошибки наведения ракеты и ограничение команды управления ракетой по уровню, новым является то, что формируют заранее, до запуска ракеты, в функции времени полета ракеты пороговое значение допустимой управляющей перегрузки ракеты, а затем, после запуска ракеты, формируют в функции времени полета ракеты текущее значение располагаемой нормальной перегрузки ракеты, определяют по командам управления ракетой в каналах тангажа и рыскания до их ограничения текущую потребную нормальную перегрузку для наведения ракеты на цель, устанавливают текущее значение уровня ограничения развиваемой нормальной перегрузки ракеты как значение, равное наименьшему из текущих значений располагаемой нормальной перегрузки ракеты и порогового значения допустимой управляющей перегрузки ракеты, сравнивают текущее значение потребной нормальной перегрузки ракеты для наведения на цель с текущим уровнем ограничения развиваемой нормальной перегрузки ракеты и при превышении потребной нормальной перегрузки для наведения ракеты на цель уровня ограничения развиваемой нормальной перегрузки команды управления и сигналы ускорения ракеты в каналах тангажа и рыскания преобразуют пропорционально коэффициенту, определяемому как отношение текущего значения уровня ограничения развиваемой нормальной перегрузки ракеты к текущему значению потребной нормальной перегрузки для наведения ракеты на цель.

В предлагаемом способе телеуправления ракетой значение текущей потребной нормальной перегрузки для наведения ракеты на цель Nпотр(t) определяют по соотношению

где Kp(t) - текущее значение программного коэффициента передачи разомкнутого контура управления ракетой;

λ(t), λFq(t) - текущие значения сигналов коррекции по отклонению ракеты относительно опорной траектории в каналах тангажа и рыскания соответственно;

λ(t), λkq(t) - текущие значения сигналов динамической ошибки наведения ракеты при движении по опорной траектории в каналах тангажа и рыскания соответственно;

g=9.81 м/с2 - ускорение силы тяжести;

t - текущее время полета ракеты.

В предлагаемом способе телеуправления ракетой текущее значение располагаемой нормальной перегрузки ракеты Nрасп(t) определяют по соотношению

где ρ - программное значение плотности воздуха;

Vp(t) - скорость ракеты;

Sм - площадь миделева сечения ракеты;

- программная производная коэффициента подъемной силы ракеты по углу атаки;

- программная производная коэффициента подъемной силы ракеты по углу отклонения рулей;

- программная производная коэффициента продольного момента ракеты по углу атаки;

- программная производная коэффициента продольного момента ракеты по углу отклонения рулей;

δmax - максимальное значение угла отклонения рулей ракеты;

P(t) - программное значение силы тяги, развиваемой двигателем ракеты;

mp(t) - программное значение массы ракеты;

g=9.81 м/с2 - ускорение силы тяжести.

Предлагаемый способ телеуправления ракетой поясняется следующим образом. В качестве опорной траектории наведения ракеты может быть использована линия визирования цели или другая кинематическая траектория в соответствии с используемым методом наведения. В процессе сопровождения цели измеряют ее координаты. После запуска ракеты и начала ее управления измеряют координаты ракеты φр и далее с учетом измеренных координат цели и в соответствии с выбранным методом наведения формируют опорную траекторию наведения в виде закона изменения ее угловых координат, например, по соотношению (3) ([1], стр.365) (рассматривается угломестная плоскость наведения с координатой φ)

где φk(t) - угловая координата опорной траектории;

φц(t) - угловая координата цели;

Δφ(t) - угол упреждения.

Затем по измеренным угловым координатам ракеты φр и координатам опорной траектории φk формируют линейное отклонение ракеты относительно опорной траектории наведения h(t)

где rp(t) - дальность до ракеты.

Затем определяют оценки отклонения и производной отклонения ракеты посредством фильтрации сигнала линейного отклонения h(t) известным способом, например, в соответствии с алгоритмом калмановской фильтрации ([2], патент РФ №2188381). Далее формируют сигнал коррекции по отклонению ракеты пропорционально линейной комбинации оценок отклонения и производной отклонения, например, по соотношению

где λF(t) - текущее значение сигнала коррекции по отклонению;

, - оценки отклонения и производной отклонения ракеты;

T(t) - весовой коэффициент, учитывающий производную оценки отклонения ракеты в законе коррекции.

Значения коэффициентов Kp(t) и T(t) определяются при анализе устойчивости и точности замкнутого контура управления ракетой.

Далее вычисляют сигнал ускорения ракеты относительно опорной траектории u(t), пропорциональный сигналу коррекции по отклонению ракеты λF(t). Этот сигнал определяет нормальное ускорение ракеты относительно опорной траектории и учитывается для уменьшения фазового запаздывания при фильтрации сигнала линейного отклонения h(t) при оценке отклонения и производной отклонения. Одновременно с этим по известным кинематическим соотношениям (с учетом параметров движения цели и программных летно-баллистических характеристик) формируют текущее значение сигнала динамической ошибки λK(t) [1, с.394] и путем суммирования его с сигналом коррекции по отклонению λF(t) формируют команду управления ракетой λ(t) в канале тангажа (и λKq(t) в канале рыскания).

Текущее пороговое значение допустимой управляющей перегрузки Nпор(t) формируют заранее, до запуска ракеты, исходя из условий стрельбы, условий обеспечения прочности ракеты и эффективности работы системы управления ракетой.

Текущее значение располагаемой нормальной перегрузки ракеты Nрасп(t) формируют в процессе управления ракетой расчетным путем по соотношению (2), которое вытекает из известных выражений ([3], А.А.Лебедев, Л.С.Чернобровкин. Динамика полета беспилотных летательных аппаратов. М.: Оборонгиз, 1962, с.103, 154, 349, 353-354).

Значения программных производных аэродинамических коэффициентов подъемной силы , , продольного момента ракеты , в функции числа Маха (скорости ракеты), программные значения массы ракеты mp(t) и тяги P(t) определяются на этапах проектирования и испытания ракет и хранятся в памяти системы управления ракетой.

Программное значение плотности воздуха ρ соответствует стандартной атмосфере с корректировкой по условиям пуска ракеты (высоте, температуре, давлении) и также хранится в памяти системы управления.

Текущее значение скорости ракеты Vp(t) определяется по измеренным координатам ракеты или задается программным значением как летно-баллистическая характеристика ракеты в функции времени полета ракеты.

В процессе управления ракетой сравнивают текущие значения пороговой допустимой управляющей перегрузки Nпор(f) и располагаемой перегрузки ракеты Nрасп(t) и наименьшее из этих значений принимают за текущее значение уровня ограничения развиваемой перегрузки ракеты Nогр(t), т.е.

По сигналам коррекции по отклонению ракеты и сигналам динамической ошибки наведения в соответствии с соотношением (1) формируют значение текущей потребной нормальной перегрузки Nпотр(t) для движения ракеты по заданной траектории. Сигналы динамической ошибки λ(t), λkq(t) определяют потребную перегрузку ракеты для движения по опорной траектории, а сигналы коррекции по отклонению ракеты λ(t), λFq(t) - потребную перегрузку ракеты для парирования отклонений ракеты от опорной траектории.

Далее сравнивают потребную перегрузку с текущим уровнем ограничения развиваемой перегрузки ракеты Nогр(t). Если

то текущие сформированные команды управления ракетой λ(t), λKq(t) и сигналы ускорения ракеты относительно опорной траектории u(t) в каналах тангажа и рыскания преобразуют пропорционально коэффициенту α(t), который определяется по соотношению

где α(t) - коэффициент преобразования.

Таким образом, если потребная перегрузка для движения ракеты по опорной траектории превышает заданное ограничение, то команды управления в каналах тангажа и рыскания уменьшают пропорционально коэффициенту α(t), т.е.

Скорректированные таким образом команды управления λφ0(t) и λq0(t) поступают на ракету. Ракета, отрабатывая команды управления с учетом текущего ограничения, развивает нормальные перегрузки в каждом канале управления, которые по векторной сумме не превышают допустимых значений, определяемых значением располагаемой перегрузки ракеты или значением пороговой допустимой перегрузки, что обеспечивает сохранение прочностных свойств ракеты. Определение коэффициента преобразования α(t) команд управления с учетом потребных команд управления в каналах тангажа и рыскания, т.е. в плоскости наведения ракеты на цель, обеспечивает устранение фазовых искажений команд управления в области ограничения реализуемой перегрузки ракеты, что сохраняет расчетные запасы устойчивости контура управления и реализацию точности наведения ракеты.

Способ телеуправления ракетой поясняется графическим материалом:

фиг.1 - уровень ограничения развиваемой перегрузки, фиг.2 - структурная схема контура телеуправления ракетой, фиг.3 - структурная схема блока формирования коэффициента преобразования. Пример формирования уровня ограничения развиваемой перегрузки представлен на фиг.1, где обозначено:

1 - располагаемая перегрузка ракеты Nрасп(t);

2 - пороговое значение допустимой перегрузки ракеты Nпор(t);

tразд - время разделения ракеты;

t - текущее время полета ракеты.

Предлагаемый способ управления может быть реализован системой управления, функциональная схема которой приведена на фиг.2, 3.

Система управления ракетой (фиг.2) состоит из пеленгатора цели (ПЦ) 3, пеленгатора ракеты (ПР) 5, блока формирования коэффициента преобразования (ФО) 15, а также содержит в каналах тангажа и рыскания блок формирования сигнала динамической ошибки (ДО) 4, который подключен к первому выходу пеленгатора цели, последовательно соединенные блок формирования линейного отклонения ракеты от опорной траектории наведения (ФЛО) 6, первый вход которого подключен к первому выходу пеленгатора ракеты, а второй вход - к первому выходу пеленгатора цели 3, блок формирования оценок отклонения и производной отклонения (ФОО) 7, блок формирования сигнала коррекции по отклонению ракеты (ФК) 8, второй вход которого соединен со вторым выходом блока 7, причем второй вход блока формирования оценок отклонения и производной отклонения 7 посредством цепи обратной связи, содержащей последовательно включенные блок формирования сигнала ускорения ракеты относительно опорной траектории (ФУ) 14 и второй блок умножения (У2) 13, соединен с выходом блока формирования сигнала коррекции по отклонению ракеты 8, сумматор (С) 9, второй вход которого подключен к выходу блока формирования сигнала динамической ошибки 4, первый блок умножения (У1) 10, устройство передачи команд управления (ПК) 11 и ракету (Р) 12, причем первый и второй входы блока формирования коэффициента преобразования 15 соединены соответственно с выходами сумматоров 9 в каналах тангажа и рыскания, а выход соединен со вторыми входами блоков умножения 10 и 13 в каналах тангажа и рыскания.

Блок формирования коэффициента преобразования 15 (фиг.3) включает в себя блок формирования текущего значения располагаемой перегрузки ракеты 17, где реализуется соотношение (2), блок формирования текущего порогового значения допустимой управляющей перегрузки 18, блок формирования текущего значения потребной перегрузки для наведения ракеты на цель 19, где реализуется соотношение (1), первый и второй входы которого являются входами блока 15, и блок сравнения значений перегрузок (СП) 20, на первый, второй и третий входы которого подаются текущие значения соответствующих перегрузок, а выход которого является выходом блока 15.

Составляющие элементы системы: пеленгатор цели 3, блок формирования сигнала динамической ошибки 4, пеленгатор ракеты 5, блок формирования линейного отклонения ракеты от опорной траекторией наведения 6, блок формирования оценок отклонения и производной отклонения 7, блок формирования сигнала коррекции по отклонению 8, сумматор 9, блоки умножения 10 и 13 и устройство передачи команд управления 11 - представляют собой известные штатные элементы систем наведения ракет ([1], с.366-372).

Блок формирования коэффициента преобразования 15 представляет собой счетно-решающее устройство и может быть выполнен, например, на базе операционных усилителей ([4], И.М.Тетельбаум, Ю.Р.Шнейдер. Практика аналогового моделирования динамических систем. - М.: Энергоатомиздат, 1987, с.178-186, 221-222).

Система телеуправления ракетой работает следующим образом. Пеленгатор цели 3 осуществляет сопровождение цели и измеряет ее координаты. После запуска ракеты пеленгатор ракеты 3 захватывает на сопровождение ракету и измеряет ее координаты. Далее рассматривается работа системы в одном канале наведения. Измеренные угловые координаты цели и ракеты поступают соответственно на первый и второй входы блока формирования линейного отклонения ракеты от опорной траектории 6, целевая координата поступает также на вход блока формирования сигнала динамической ошибки 4. В блоке 6 формируется сигнал линейного отклонения ракеты, который поступает на вход блока формирования оценок отклонения и производной отклонения 7, где происходит фильтрация сигналов отклонения и производной отклонения с учетом сигнала ускорения ракеты, определяемого в блоке 14 и корректируемого коэффициентом α(t) преобразования команд в блоке 13. Сигналы оценок отклонения и его производной с блока 7 поступают в блок формирования сигнала коррекции по отклонению 8 и далее на первый вход сумматора 9, на второй вход которого поступает сигнал с выхода блока динамической ошибки 4. Полученная таким образом суммарная команда управления поступает с выхода этого блока на первые входы первого блока умножения 10 и блока формирования коэффициента преобразования 15. В блоке 15 происходит формирование текущих значений потребной перегрузки ракеты для наведения на цель и располагаемой перегрузки ракеты, а также текущего порогового значения допустимой управляющей перегрузки (соответственно блоки 17, 18 и 19), которые поступают в блок сравнения 20. Далее в соответствии с результатом сравнения по соотношениям (6) и (7) определяется по выражению (8) коэффициент преобразования α(t), значения которого с выхода блока поступают в блоки 10 и 13 соответствующих каналов управления. Скорректированная на коэффициент преобразования команда управления ракетой (9) устройством передачи команд управления 11 передается на ракету 12. Ракета 12 под действием этой команды развивает перегрузку, не превышающую допустимого значения.

Таким образом, предлагаемый способ наведения телеуправляемой ракетой обеспечивает повышение точности наведения телеуправляемой ракеты и расширение условий применения, что выгодно отличает его от известных.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 42.
10.04.2013
№216.012.3436

Электронный блок двухканальной лазерной полуактивной головки самонаведения

Изобретение относится к технике управления вращающимися по углу крена беспилотными летательными аппаратами и может быть использовано в комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение методом пропорциональной навигации. Электронный блок (ЭБ) включает...
Тип: Изобретение
Номер охранного документа: 0002478909
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.37b9

Способ одновременного наведения телеориентируемых в луче управления ракет (варианты) и система наведения для его осуществления

Способы и система относятся к ракетной технике и могут быть использованы в комплексах управляемого вооружения. Варианты способов одновременного наведения телеориентируемых в луче ракет включают формирование луча управления, совмещение его оптической оси с линией визирования цели, сужение луча...
Тип: Изобретение
Номер охранного документа: 0002479818
Дата охранного документа: 20.04.2013
20.05.2013
№216.012.41d8

Способ формирования сигналов управления вращающимся по углу крена самонаводящимся снарядом

Изобретения относятся к области разработки систем управления беспилотными летательными аппаратами и может быть использовано в комплексах управляемого артиллерийского вооружения и других комплексах вооружения, в которых на конечном участке траектории осуществляется самонаведение по методу...
Тип: Изобретение
Номер охранного документа: 0002482426
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4d88

Способ стрельбы управляемым снарядом с лазерной полуактивной головкой самонаведения

Изобретение относится к военной технике и может быть использовано для управления артиллерийскими снарядами. Технический результат - повышение быстродействия. Для этого способ включает определение координат цели целеуказателем и передачу их в пульт командира огневой позиции. В пульте командира...
Тип: Изобретение
Номер охранного документа: 0002485430
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5163

Способ наведения вращающейся ракеты и система наведения для его осуществления

Изобретение относится к области разработки систем наведения ракет. Способ наведения вращающейся ракеты включает формирование модулированного излучения на пусковом устройстве, прием излучения на ракете и выработку сигналов управления в вертикальной и горизонтальной плоскостях, формирование...
Тип: Изобретение
Номер охранного документа: 0002486428
Дата охранного документа: 27.06.2013
27.07.2013
№216.012.5a6d

Упаковочная тара для патронов к ручным гранатометам

Изобретение относится к упаковочной таре для транспортирования и хранения малогабаритных патронов. Упаковочная тара в виде ящика с крышкой содержит полые контейнеры, включающие корпуса, крышки, уплотнительные кольца и компенсаторы, жесткую прокладку и ложементы для крепления контейнеров....
Тип: Изобретение
Номер охранного документа: 0002488770
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5df7

Способ измерения угла крена ракеты, регулярно вращающейся по углу крена, и датчик угла крена ракеты для его осуществления

Группа изобретений относится к ракетной технике. В способе осуществляют измерение угла крена гироскопическим датчиком угла крена и преобразование его в сигнал, близкий к меандру, с периодом повторения, соответствующим 360°. Этот сигнал формируют на выходе устройства измерения угла крена ракеты....
Тип: Изобретение
Номер охранного документа: 0002489676
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6505

Патрон

Изобретение относится к боеприпасам, в частности к патронам с дымовыми гранатами для гранатометов. Патрон содержит гильзу и скрепленную с ней разрушаемой при выстреле связью гранату. Граната включает корпус, инерционный взрыватель, дымовой заряд и прокладки. Корпус образован полыми пластиковыми...
Тип: Изобретение
Номер охранного документа: 0002491498
Дата охранного документа: 27.08.2013
27.09.2013
№216.012.700c

Способ определения угла крена ракеты, регулярно вращающейся по углу крена, и устройство для его осуществления

Изобретение относится к области вооружения, а именно к способу и системам управления ракетами, вращающимися по углу крена, и может быть использовано в системах управления, формирующих на борту команды управления. Технический результат - повышение точности. Для этого до старта ракеты измеряют...
Тип: Изобретение
Номер охранного документа: 0002494335
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.7401

Способ стрельбы управляемой ракетой

Способ относится к управляемому вооружению. В способе осуществляется топографическая привязка целеуказателя и пусковой установки к местности, цель обнаруживается целеуказателем, координаты цели определяются и передаются в пульт огневой позиции. Устанавливается единое время в пульте разведчика и...
Тип: Изобретение
Номер охранного документа: 0002495354
Дата охранного документа: 10.10.2013
Показаны записи 11-20 из 98.
10.11.2013
№216.012.7f07

Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя

Изобретение относится к области наведения управляемых ракет. Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя, включает формирование на носителе лазерного луча с информационным полем управления, наведение на цель оптического прицела, ось которого съюстирована с осью...
Тип: Изобретение
Номер охранного документа: 0002498192
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.7fa0

Интегрированная автоматическая система сопровождения

Изобретение предназначено для систем автоматического наблюдения и сопровождения за подвижными объектами в пространстве преимущественно с качающегося основания и может быть использовано для управления воздушным движением и уничтожения маневрирующих подвижных целей. Достигаемый технический...
Тип: Изобретение
Номер охранного документа: 0002498345
Дата охранного документа: 10.11.2013
27.02.2014
№216.012.a6f9

Космическая энергетическая установка с машинным преобразованием энергии

Космическая энергетическая установка с машинным преобразованием энергии содержит замкнутый контур с газообразным рабочим телом, реализующим замкнутый термодинамический цикл Брайтона. В состав замкнутого термодинамического цикла входят источник тепла, турбокомпрессор, кинематически связанный с...
Тип: Изобретение
Номер охранного документа: 0002508460
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b346

Способ формирования сигналов управления вращающейся вокруг продольной оси двухканальной ракетой

Изобретение относится к ракетной технике и может быть использовано в системах наведения управляемых ракет. Технический результат - повышение точности наведения ракеты за счет устранения фазовой связи ее каналов управления. Для этого сигналы рассогласования между командами управления ракетой в...
Тип: Изобретение
Номер охранного документа: 0002511610
Дата охранного документа: 10.04.2014
27.08.2014
№216.012.f06e

Способ определения угла крена вращающегося по крену летательного аппарата

Изобретение относится к области управления летательными аппаратами (ЛА), в частности, стабилизированными вращением. Способ использует информацию о векторе магнитного поля Земли (МПЗ), измеренном датчиком МПЗ в связанной с ЛА вращающейся по крену системе координат. Сигнал измеренного датчиком...
Тип: Изобретение
Номер охранного документа: 0002527369
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.f084

Способ управления ракетой и система управления для его осуществления

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. В способе управления ракетой формируют управляющий сигнал автоколебательным приводом аэродинамических рулей с обратной связью и вибрационной линеаризацией и соответствующее...
Тип: Изобретение
Номер охранного документа: 0002527391
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.0638

Способ наведения вращающейся ракеты с релейным приводом рулевого органа и система для его осуществления

Изобретение относится к области приборостроения и может быть использовано в комплексах противотанковых управляемых ракет (ПТУР) и зенитных управляемых ракет (ЗУР). Технический результат - повышение точности наведения ракет с релейными приводами рулевых органов (ПРО). Для этого задают до пуска...
Тип: Изобретение
Номер охранного документа: 0002532993
Дата охранного документа: 20.11.2014
27.12.2014
№216.013.1526

Способ управления ракетой и система управления для его осуществления

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Оно предназначено для повышения точности наведения ракет с аэродинамическими рулями. Сущность предлагаемой совокупности технических решений заключается в повышении точности...
Тип: Изобретение
Номер охранного документа: 0002536838
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1644

Способ телеуправления ракетой

Изобретение относится к ракетной технике и может быть использовано в системах наведения телеуправляемых ракет. Технический результат - повышение точности и помехозащищенности телеуправления ракетой. Способ включает измерение угловых координат и дальностей цели и ракеты, формирование в функции...
Тип: Изобретение
Номер охранного документа: 0002537124
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1728

Снаряд

Изобретение относится к боеприпасам, в частности к подкалиберным артиллерийским снарядам. Снаряд содержит подкалиберный проникающий сердечник, поддон и дисковый направляющий элемент. Поддон и дисковый направляющий элемент выполнены неотделяемыми. На поддоне размещен скользящий обтюрирующий...
Тип: Изобретение
Номер охранного документа: 0002537356
Дата охранного документа: 10.01.2015
+ добавить свой РИД